288 research outputs found

    The effect of meninges on the electric fields in TES and TMS: Numerical modeling with adaptive mesh refinement

    Get PDF
    Background When modeling transcranial electrical stimulation (TES) and transcranial magnetic stimulation (TMS) in the brain, the meninges – dura, arachnoid, and pia mater – are often neglected due to high computational costs. Objective We investigate the impact of the meningeal layers on the cortical electric field in TES and TMS while considering the headreco segmentation as the base model. Method We use T1/T2 MRI data from 16 subjects and apply the boundary element fast multipole method with adaptive mesh refinement, which enables us to accurately solve this problem and establish method convergence at reasonable computational cost. We compare electric fields in the presence and absence of various meninges for two brain areas ( and ) and for several distinct TES and TMS setups. Results Maximum electric fields in the cortex for focal TES consistently increase by approximately 30% on average when the meninges are present in the CSF volume. Their effect on the maximum field can be emulated by reducing the CSF conductivity from 1.65 S/m to approximately 0.85 S/m. In stark contrast to that, the TMS electric fields in the cortex are only weakly affected by the meningeal layers and slightly (∼6%) decrease on average when the meninges are included. Conclusion Our results quantify the influence of the meninges on the cortical TES and TMS electric fields. Both focal TES and TMS results are very consistent. The focal TES results are also in a good agreement with a prior relevant study. The solver and the mesh generator for the meningeal layers (compatible with SimNIBS) are available online

    Connectivity Analysis Reveals a Cortical Network for Eye Gaze Perception

    Get PDF
    Haxby et al. (Haxby JV, Hoffman EA, Gobbini MI. 2000. The distributed human neural system for face perception. Trends Cogn Sci. 4:223–233.) proposed that eye gaze processing results from an interaction between a “core” face-specific system involved in visual analysis and an “extended” system involved in spatial attention, more generally. However, the full gaze perception network has remained poorly specified. In the context of a functional magnetic resonance imaging study, we used psychophysiological interactions (PPIs) to identify brain regions that showed differential connectivity (correlation) with core face perception structures (posterior superior temporal sulcus [pSTS] and fusiform gyrus [FG]) when viewing gaze shifts relative to control eye movements (opening/closing the eyes). The PPIs identified altered connectivity between the pSTS and MT/V5, intraparietal sulcus, frontal eye fields, superior temporal gyrus (STG), supramarginal gyrus, and middle frontal gyrus (MFG). The FG showed altered connectivity with the same areas of the STG and MFG, demonstrating the contribution of both dorsal and ventral core face areas to gaze perception. We propose that this network provides an interactive system that alerts us to seen changes in other agents’ gaze direction, makes us aware of their altered focus of spatial attention, and prepares a corresponding shift in our own attention

    Neurons in the human amygdala encode face identity, but not gaze direction

    Get PDF
    The amygdala is important for face processing, and direction of eye gaze is one of the most socially salient facial signals. Recording from over 200 neurons in the amygdala of neurosurgical patients, we found robust encoding of the identity of neutral-expression faces, but not of their direction of gaze. Processing of gaze direction may rely on a predominantly cortical network rather than the amygdala

    What we observe is biased by what other people tell us: beliefs about the reliability of gaze behavior modulate attentional orienting to gaze cues

    Get PDF
    For effective social interactions with other people, information about the physical environment must be integrated with information about the interaction partner. In order to achieve this, processing of social information is guided by two components: a bottom-up mechanism reflexively triggered by stimulus-related information in the social scene and a top-down mechanism activated by task-related context information. In the present study, we investigated whether these components interact during attentional orienting to gaze direction. In particular, we examined whether the spatial specificity of gaze cueing is modulated by expectations about the reliability of gaze behavior. Expectations were either induced by instruction or could be derived from experience with displayed gaze behavior. Spatially specific cueing effects were observed with highly predictive gaze cues, but also when participants merely believed that actually non-predictive cues were highly predictive. Conversely, cueing effects for the whole gazed-at hemifield were observed with non-predictive gaze cues, and spatially specific cueing effects were attenuated when actually predictive gaze cues were believed to be non-predictive. This pattern indicates that (i) information about cue predictivity gained from sampling gaze behavior across social episodes can be incorporated in the attentional orienting to social cues, and that (ii) beliefs about gaze behavior modulate attentional orienting to gaze direction even when they contradict information available from social episodes

    Food Catches the Eye but Not for Everyone: A BMI–Contingent Attentional Bias in Rapid Detection of Nutriments

    Get PDF
    An organism's survival depends crucially on its ability to detect and acquire nutriment. Attention circuits interact with cognitive and motivational systems to facilitate detection of salient sensory events in the environment. Here we show that the human attentional system is tuned to detect food targets among nonfood items. In two visual search experiments participants searched for discrepant food targets embedded in an array of nonfood distracters or vice versa. Detection times were faster when targets were food rather than nonfood items, and the detection advantage for food items showed a significant negative correlation with Body Mass Index (BMI). Also, eye tracking during searching within arrays of visually homogenous food and nonfood targets demonstrated that the BMI-contingent attentional bias was due to rapid capturing of the eyes by food items in individuals with low BMI. However, BMI was not associated with decision times after the discrepant food item was fixated. The results suggest that visual attention is biased towards foods, and that individual differences in energy consumption - as indexed by BMI - are associated with differential attentional effects related to foods. We speculate that such differences may constitute an important risk factor for gaining weight

    Why I tense up when you watch me: inferior parietal cortex mediates an audience’s influence on motor performance

    Get PDF
    The presence of an evaluative audience can alter skilled motor performance through changes in force output. To investigate how this is mediated within the brain, we emulated real-time social monitoring of participants’ performance of a fine grip task during functional magnetic resonance neuroimaging. We observed an increase in force output during social evaluation that was accompanied by focal reductions in activity within bilateral inferior parietal cortex. Moreover, deactivation of the left inferior parietal cortex predicted both inter- and intra-individual differences in socially-induced change in grip force. Social evaluation also enhanced activation within the posterior superior temporal sulcus, which conveys visual information about others’ actions to the inferior parietal cortex. Interestingly, functional connectivity between these two regions was attenuated by social evaluation. Our data suggest that social evaluation can vary force output through the altered engagement of inferior parietal cortex; a region implicated in sensorimotor integration necessary for object manipulation, and a component of the action-observation network which integrates and facilitates performance of observed actions. Social-evaluative situations may induce high-level representational incoherence between one’s own intentioned action and the perceived intention of others which, by uncoupling the dynamics of sensorimotor facilitation, could ultimately perturbe motor output

    Novel effects of the gastrointestinal hormone secretin on cardiac metabolism and renal function

    Get PDF
    The cardiac benefits of gastrointestinal hormones have been of interest in recent years. The aim of this study was to explore the myocardial and renal effects of the gastrointestinal hormone secretin in the GUTBAT trial (NCT03290846). A placebo-controlled crossover study was conducted on 15 healthy males in fasting conditions, where subjects were blinded to the intervention. Myocardial glucose uptake was measured with [F-18]2-fluoro-2-deoxy-o-glucose ([F-18]FDG) positron emission tomography. Kidney function was measured with [F-18]FDG renal clearance and estimated glomerular filtration rate (eGFR). Secretin increased myocardial glucose uptake compared with placebo (secretin vs. placebo, means +/- SD, 15.5 +/- 7.4 vs. 9.7 +/- 4.9 gmol/100 g/min, 95% confidence interval (CI) [2.2, 9.4], P = 0.004). Secretin also increased [F-18]FDG renal clearance (44.5 +/- 5.4 vs. 39.5 8.5 mL/min, 95%CI [1.9, 8.1], P = 0.004), and eGFR was significantly increased from baseline after secretin, compared with placebo (17.8 +/- 9.8 vs. 6.0 +/- 5.2 Delta mL/min/1.73 m(2),( ) 95%CI [6.0, 17.6], P = 0.001). Our results implicate that secretin increases heart work and renal filtration, making it an interesting drug candidate for future studies in heart and kidney failure. NEW & NOTEWORTHY Secretin increases myocardial glucose uptake compared with placebo, supporting a previously proposed inotropic effect. Secretin also increased renal filtration rate.Peer reviewe

    Systemic cross-talk between brain, gut, and peripheral tissues in glucose homeostasis : effects of exercise training (CROSSYS). Exercise training intervention in monozygotic twins discordant for body weight

    Get PDF
    Background: Obesity and physical inactivity are major global public health concerns, both of which increase the risk of insulin resistance and type 2 diabetes. Regulation of glucose homeostasis involves cross-talk between the central nervous system, peripheral tissues, and gut microbiota, and is affected by genetics. Systemic cross-talk between brain, gut, and peripheral tissues in glucose homeostasis: effects of exercise training (CROSSYS) aims to gain new systems-level understanding of the central metabolism in human body, and how exercise training affects this cross-talk. Methods: CROSSYS is an exercise training intervention, in which participants are monozygotic twins from pairs discordant for body mass index (BMI) and within a pair at least the other is overweight. Twins are recruited from three population-based longitudinal Finnish twin studies, including twins born in 1983-1987, 1975-1979, and 1945-1958. The participants undergo 6-month-long exercise intervention period, exercising four times a week (including endurance, strength, and high-intensity training). Before and after the exercise intervention, comprehensive measurements are performed in Turku PET Centre, Turku, Finland. The measurements include: two positron emission tomography studies (insulin-stimulated whole-body and tissue-specific glucose uptake and neuroinflammation), magnetic resonance imaging (brain morphology and function, quantification of body fat masses and organ volumes), magnetic resonance spectroscopy (quantification of fat within heart, pancreas, liver and tibialis anterior muscle), echocardiography, skeletal muscle and adipose tissue biopsies, a neuropsychological test battery as well as biosamples from blood, urine and stool. The participants also perform a maximal exercise capacity test and tests of muscular strength. Discussion: This study addresses the major public health problems related to modern lifestyle, obesity, and physical inactivity. An eminent strength of this project is the possibility to study monozygotic twin pairs that share the genome at the sequence level but are discordant for BMI that is a risk factor for metabolic impairments such as insulin resistance. Thus, this exercise training intervention elucidates the effects of obesity on metabolism and whether regular exercise training is able to reverse obesity-related impairments in metabolism in the absence of the confounding effects of genetic factors.Peer reviewe

    The Obesity Risk SNP (rs17782313) near the MC4R Gene Is Not Associated with Brain Glucose Uptake during Insulin Clamp-A Study in Finns

    Get PDF
    The melanocortin system is involved in the control of adiposity through modulation of food intake and energy expenditure. The single nucleotide polymorphism (SNP) rs17782313 near the MC4R gene has been linked to obesity, and a previous study using magnetoencephalography has shown that carriers of the mutant allele have decreased cerebrocortical response to insulin. Thus, in this study, we addressed whether rs17782313 associates with brain glucose uptake (BGU). Here, [F-18]-fluorodeoxyglucose positron emission tomography (PET) data from 113 Finnish subjects scanned under insulin clamp conditions who also had the rs17782313 determined were compiled from a single-center cohort. BGU was quantified by the fractional uptake rate. Statistical analysis was performed with statistical parametric mapping. There was no difference in age, BMI, and insulin sensitivity as indexed by the M value between the rs17782313-C allele carriers and non-carriers. Brain glucose uptake during insulin clamp was not different by gene allele, and it correlated with the M value, in both the rs17782313-C allele carriers and non-carriers. The obesity risk SNP rs17782313 near the MC4R gene is not associated with brain glucose uptake during insulin clamp in humans, and this frequent mutation cannot explain the enhanced brain glucose metabolic rates in insulin resistance
    corecore