404 research outputs found

    The hydrogen evolution and oxidation kinetics during overdischarging of sealed nickel-metal hydride batteries

    Get PDF
    The hydrogen evolution and oxidation kinetics in NiMH batteries have been investigated under temperature-controlled, steady-state, overdischarging conditions within a temperature range of 10 and 50°C and at discharging currents of 1–330 mA (0.0009 to 0.3 C rate). In situ Raman spectroscopic analyses of the gas phase showed that hydrogen is the only gas evolving inside the battery during overdischarge at the above-mentioned conditions. The pressure increase could be very critical at low temperatures, leading to opening of the safety vent at relatively low discharging currents, for example, only 220 mA at 10°C. The polarization parameters for the hydrogen evolution reaction, such as Tafel slopes and exchange currents were determined at the different temperatures as well as the activation energy for the evolution and oxidation processes. The reaction mechanisms and the rate-determining steps are discussed. These are highly valuable information in NiMH modeling as they are obtained directly from the system of interest. Furthermore, the obtained results make battery simulations more realistic by minimizing the number of parameters involved and making the correct assumptions

    Mapping the interdisciplinary nature and co-evolutionary patterns in five nano-industrial sectors

    Get PDF

    Modeling All-Solid-State Li-Ion Batteries

    Full text link

    Nanotechnology publications and patents: a review of social science studies and search strategies

    Get PDF

    Mg-Ti-H thin films for smart solar collectors

    Get PDF
    Mg-Ti-H thin films are found to have very attractive optical properties: they absorb 87% of the solar radiation in the hydrogenated state and only 32% in the metallic state. Furthermore, in the absorbing state Mg-Ti-H has a low emissivity; at 400 K only 10% of blackbody radiation is emitted. The transition between both optical states is fast, robust, and reversible. The sum of these properties highlights the applicability of such materials as switchable smart coatings in solar collector

    Wet-Chemical Synthesis of 3D Stacked Thin Film Metal-Oxides for All-Solid-State Li-Ion Batteries.

    Full text link
    By ultrasonic spray deposition of precursors, conformal deposition on 3D surfaces of tungsten oxide (WO₃) negative electrode and amorphous lithium lanthanum titanium oxide (LLT) solid-electrolyte has been achieved as well as an all-solid-state half-cell. Electrochemical activity was achieved of the WO₃ layers, annealed at temperatures of 500 °C. Galvanostatic measurements show a volumetric capacity (415 mAh·cm-3) of the deposited electrode material. In addition, electrochemical activity was shown for half-cells, created by coating WO₃ with LLT as the solid-state electrolyte. The electron blocking properties of the LLT solid-electrolyte was shown by ferrocene reduction. 3D depositions were done on various micro-sized Si template structures, showing fully covering coatings of both WO₃ and LLT. Finally, the thermal budget required for WO₃ layer deposition was minimized, which enabled attaining active WO₃ on 3D TiN/Si micro-cylinders. A 2.6-fold capacity increase for the 3D-structured WO₃ was shown, with the same current density per coated area
    • …
    corecore