1,093 research outputs found

    Simulating the impacts of climate change on ecosystems: the importance of mortality

    Get PDF
    Griffith Sciences, Griffith School of EnvironmentNo Full Tex

    Heavy ion beam lifetimes at relativistic and ultrarelativistic colliders

    Get PDF
    The effects of higher order corrections in ultra-relativistic nuclear collisions are considered. It is found that higher order contributions are small at low energy, large at intermediate energy and small again at very high energy. An explanation for this effect is given. This means that the Weizsacker-Williams formula is a good approximation to use in calculating cross sections and beam lifetimes at energies relevant to RHIC and LHC.Comment: 10 pages, 2 tables, 4 figure

    An introduction to using the FORTRAN programs provided with Computational Nuclear Physics 1 Nuclear Structure

    Get PDF
    The authors of this paper have provided a set of ready-to-run FORTRAN programs that should be useful in the field of theoretical nuclear physics. The purpose of this document is to provide a simple synopsis of the programs and their use. A separate section is devoted to each program set and includes: abstract; files; compiling, linking, and running; obtaining results; and a tutorial

    Process-dependence of biogenic feedback effects in models of plankton dynamics.

    Get PDF
    The prospect of human-induced climate change has stimulated research into several biological processes that might affect climate. One such process that has attracted a substantial research effort is the so-called CLAW hypothesis (Charlson et al. 1987). This hypothesis suggests that marine plankton ecosystems may effectively regulate climate by a feedback associated with the production of dimethylsulphide (DMS). Charlson et al. (1987) observed that some of the DMS produced by marine ecosystems is transferred from the ocean to the atmosphere where it is the major source of cloud condensing nuclei (CCN) over the remote oceans. The aerosols resulting from biogenic DMS emissions can have a direct effect on the solar radiative forcing experienced by the Earth through scattering, absorption and reflection and can also lead to increased cloud formation; the CLAW hypothesis proposes that these mechanisms could regulate climate. Charlson et al (1987) argued that an increase in global temperature would lead to increased biogenic DMS emissions from the ocean and result in an increase in scattering, cloud cover and cloud albedo that would increase the proportion of the incoming solar radiation reflected back into space (thus changing the global albedo), and thereby cooling the planet. The objective of this paper is to examine the implications of the climate regulation process proposed by Charlson et al. (1987) for the dynamics of the ecosystems that produce it. Cropp et al. (2007) developed a simple plankton model that incorporated the DMS feedback mechanism and compared its dynamics to the same ecosystem model without the feedback. These simulations revealed that the presence of the feedback generally enhanced the stability of the ecosystem by making it more resilient to perturbation. In this research, we compare the effect of the feedbacks on a similar NPZ ecosystem model that has a greater range of dynamical behaviour than the model used by Cropp et al. (2007). The results of simulations with the new feedback model are compared to the results of Cropp et al. (2007) to elucidate the influence of the model formulation on the effects of the feedback

    The Nystrom plus Correction Method for Solving Bound State Equations in Momentum Space

    Get PDF
    A new method is presented for solving the momentum-space Schrodinger equation with a linear potential. The Lande-subtracted momentum space integral equation can be transformed into a matrix equation by the Nystrom method. The method produces only approximate eigenvalues in the cases of singular potentials such as the linear potential. The eigenvalues generated by the Nystrom method can be improved by calculating the numerical errors and adding the appropriate corrections. The end results are more accurate eigenvalues than those generated by the basis function method. The method is also shown to work for a relativistic equation such as the Thompson equation.Comment: Revtex, 21 pages, 4 tables, to be published in Physical Review

    Modelling dimethylsulphide production at the Bermuda Atlantic time series (BATS)

    Get PDF
    Dimethylsulphide (DMS) is produced by upper ocean ecosystems and emitted to the atmosphere where it may have an important role in climate regulation. Several attempts to quantify the role of DMS in climate change have been undertaken in modeling studies. We examine a model of biogenic DMS production and describe its endogenous dynamics and sensitivities. We extend the model to develop a one-dimensional version that more accurately resolves the important processes of the mixed layer in determining the ecosystem dynamics. Comparisons of the results of the one-dimensional model with vertical profiles of DMS in the upper ocean measured at the Bermuda Atlantic Time Series suggest that the model represents the interaction between the biological and physical processes well. Our analysis of the model confirms its veracity and provides insights into the important processes determining DMS concentration in the oceans

    Multiple nucleon knockout by Coulomb dissociation in relativistic heavy-ion collisions

    Get PDF
    The Coulomb dissociation contributions to fragmentation cross sections in relativistic heavy ion collisions, where more than one nucleon is removed, are estimated using the Weizsacker-Williams method of virtual quanta. Photonuclear cross sections taken from experimental results were used to fold into target photon number spectra calculated with the Weizsacker-Williams method. Calculations for several projectile target combinations over a wide range of charge numbers, and a wide range of incident projectile energies, are reported. These results suggest that multiple nucleon knockout by the Coulomb field may be of negligible importance in galactic heavy ion studies for projectiles lighter than Fe-56

    Second quantization techniques in the scattering of nonidentical composite bodies

    Get PDF
    Second quantization techniques for describing elastic and inelastic interactions between nonidentical composite bodies are presented and are applied to nucleus-nucleus collisions involving ground-state and one-particle-one-hole excitations. Evaluations of the resultant collision matrix elements are made through use of Wick's theorem

    Symmetry considerations in the scattering of identical composite bodies

    Get PDF
    Previous studies of the interactions between composite particles were extended to the case in which the composites are identical. The form of the total interaction potential matrix elements was obtained, and guidelines for their explicit evaluation were given. For the case of elastic scattering of identical composites, the matrix element approach was shown to be equivalent to the scattering amplitude method
    corecore