
AN INTRODUCTION TO USING THE FORTRAN PROGRAMS PROVIDED WITH

COMPUTATIONAL NUCLEAR PHYSICS 1

NUCLEAR STRUCTURE

K. LANGANKE, J.A. MARUHN AND S.E. KOONIN (EDS.)

SPRINGER-VARLAG BERLIN GERMANY 1991

Matthew A. Boytor and John W. Norbury

Department of Physics

Rider College

Lawrenceville NJ 08648

https://ntrs.nasa.gov/search.jsp?R=19920020770 2020-03-17T11:29:16+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42811877?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

INTRODUCTION

The authors of Computational Nuclear Physics have provided along with their text an excellent set
of well-written, ready-terun Fortran programs that should prove useful in many disciplines of theoretical
nuclear physics.

The purpose of this document is to provide, simply, a synopsis of the programs and their use for tho*
who wish to begin working on the computer immediately. We will attempt to provide some background on
each program before going into the specific details of how to get the program running and make its results
useful.

A separate section in devoted to each chapter (and program set) in the text. Within each section, there
are five headings. A brief description of what will be found in each follows.

Abstract - A short summary of what the program(s) will do, and brief instructions on their use.
Files - A listing of the files provided by the authors and their content and use.
Compiling, linking and running - A comprehensive set of instructions giving the specifics on installing the
code(s).
Obtaining results - A section of hints, notes and procedures to help users make effective use of the code(s).
Tutorial - A detailed, stepby-step procedure for installing the code and running an example calculation.

Thin guide is not meant to be a replacement for the text, and thus we will not present information (such
as tables, charts) that is present in the text except where necessary.

All on the procedures given are general with the exception of the tutorial which is specific to VAX/VMS.
The particular examples we give were checked for accuracy on a VAX 4000 using VAX/VMS 5.3 and VAX
Fortran.

When we refer to a specific file path, the characters ' ... ' mean the file specification necessary to reach
the level where the specific files we refer to have been installed in your system.

A suggestion: It is useful to have a separate subdirectory for each chapter in the text. An easy way to
do this is with a system something like this:

chapter 1 [...KOONIN.CHAPTER- 11

and so on for each of the 10 chapters. This will simplify keeping track of the many files that most of
the programs use. Also , keep in mind that as a package, the programs require a t least 10.0 MBytes disk
space to be used effectively. Be sure that this amount is available before beginning to avoid delays. We will
point out when a particular program uses either large amounts of disk space or cpu time. Finally we have
ensured that all programs run without errors on a Vax.

- - --

CHAPTER 1

THE NUCLEAR SHELL MODEL

ABSTRACT
The c o d a consist of four separate programs. The first two, FDSMCFP and PD are used to calculate

coefficients needed by the two main codes, FDSM and FDTR. FDSMCFP and PD need only be run one
time and ss long as the data files are retained, one need only generate an appropriate input file and run the
program (FDSM or FDTR) of interest.

FILES
FDSMCFP.FOR - This is the Fortran code for the segment that generates the coefficients of fractional

parentage (CFPs).
PD.FOR - Fortran code to generate the Hamiltonian operator matrix elements
LIB.FOR - A Fortran library of often used subroutine#
FDUO.FOR - Part 1 of the actual shell model code
FDTR.FOR - Part 2 of the shell model code (computes transitions)
FDSM.INP - A sample input file
FDTR.INP - A sample input file for transition calculations

COMPILING, LINKING AND RUNNING
Note: In order to use the programs in this chapter, 5.0 Mbytes of disk space are required. The IMSL

Fortran library is also required.
Begin by compiling the above five Fortran source codes separately. Next, link FDSM.OBJ, FDSM-

CFP.OBJ, PD.OBJ and FDTR.OBJ to LIB.0B.l and the IMSL library. (They should not be linked to each
other. See the tutorial.)

The first time these programs are used, FDSMCFP and PD will need to be run. These take only a few
minutes of cpu time, with the exception of FDSMCFP1s second run, which will take about 120 minutes of
cpu time to complete.

First, run FDSMCFP giving it 'S08' input in response to 'symmetry' prompt. Then, run it again (in
batch mode) using 'SP6' input, which will, as stated before, require about 2 hours of cpu time. Then, when
the job has finished, run PD twice, once for 'S08' and once for 'SP6'. These runs will produce several output
files. Keep these files as they are required for all subsequent runs of FDUO and FDTR.

The programs FDUO and FDTR take input from files named FDUO.INP and FDTR.INP. All input
is done in one block format. Output is in the form of a comprehensive output file named FDTR.OUT or
FDUO.OUT.

OBTAINING RESULTS / NOTES
As stated previously, all input and output to/from the FDUO and FDTR codes is via data files using a

text format. The input file is in block form. Note that the dollar sign must be in the second column or else
an input conversion error will occur.

An effective way to keep track of files is to write a separate input Ale for each problem you will be
solving, then copy this file to either FDUO.INP or FDSM.INP and execute the program. When finished,
copy the output file to a separate output file for each project.

A comprehensive description of the input parameters is provided in the text. The author provides
a sample input data file which can be used to verify the programs output and to serve as the basis for
experimenting with the parameters.

TUTORIAL

Compile the five Fortran source code files.

S FORTRAN FDSMCFP.FOR
S FORTRAN PD.FOR
S FORTRAN LIB.FOR
S FORTRAN FDUO.FOR
S FORTRAN FDTR.FOR

Each of the four program object files is now linked to the library object file M well as the IMSL library.
(They should not be linked to each other.)

S LINK FDSMCFP.OBJ, LIB.OBJ, IMSLILIBRARY
S LINK PD.OBJ, LIB.OBJ, IMSLILIBRARY
$ LINK FDUO.OBJ, LIB.OBJ, IMSLILIBRARY
$ LINK FDTR.OBJ, LIB.OBJ, IMSL/LIBRARY

The FDSMCFP program is run first to generate a file of coefficients. Run it first for 3 0 8 ' symmetry,
then as a batch job for the 'SP6' symmetry M this will take about 2 hours cpu time.

S RUN FDSMCFP.EXE
SO8

Note that SO8 must be entered in UPPERCASE letters. This will create 4 new files named S08P.DATl
S08JSIZE.DATlS08CFP.DAT and SO8JSIZE.TAB.

A typical batch file would be

8 RUN FDSMCFP.EXE
SP6

Note that SP6 must be entered in UPPERCASE letters.

This will create 4 new files named SP6P.DATl SP6JSIZE.DAT,SP6CFP.DAT and SP6JSIZE.TAB. These
are needed as input for FDUO and FDTR.

When the job has finished running, run PD for both 5 0 8 ' and 'SP6' symmetries.
To run the main codes using the sample input file, simply type

8 RUN FDUO.EXE

and then to compute the transitions

8 RUN FDTR.EXE

The output will be written to files named FDSM.OUT and FDTR.OUT in a text format.

CHAPTER 2

THE SKYRME-HARTREE-FOCK MODEL OF THE NUCLEAR GROUND STATE

ABSTRACT
The Skyrme-Hartree-Fock method is implemented in a single Fortran program SKHAFO. The code uses

an iterative solution. A sample input file for the 17 [O] nucleus is provided.

FILES
SKHAFO.FOR - Fortran source code for the HartrecFock analysis
FOROO5.DAT - Sample input file

COMPILING, LINKING AND RUNNING
There are no special requirements; simply compile the single source code file, link the object file and

run the program.

OBTAINING RESULTS / NOTES
All input and output is done using files. The input file must be named FOR005.DAT. Output is written

to files named FOROO6.DAT and FOROl1.DAT. As with several of the programs in the text, a convenient
method of processing data sets is to rename input files to FOROO5.DAT, run the program and then rename
the output to another file for safe keeping.

Comprehensive descriptions of the input parameters are provided in the text.
Do not be concerned with what may be interpreted as error messages in the output file that refer to for

the PAIR routine, indicating termination of the calculation without convergence in the first few iterations.
There is no reason to be concerned about this as the PAIR routine converges well in the later iterations.

TUTORIAL
The first steps are to compile and link the program.

$ FORTRAN SKHAFO.FOR
$ LINK SKHAFO.FOR

Since a sample input file named FOR005.DAT is provided, simply run the program by typing $ RUN
SKHAFO.EXE

The output is written to two files, FOROO6.DAT and FORO11.DAT.

CHAPTER 3

THE CRANKED NILSSON MODEL

ABSTRACT
The main code for this chapter is NICRA.

FILES
NICRA-FOR - The Nilsson Cranker Fortran source code
APPEN.TEX - Text file giving example output and hints
INPUT1.DAT INPUT2.DAT - Two example input files for the study of 160 [Yb]
NICRAPAR.FOR - Include file of parameters
NICRAINC.FOR - Include file of common block statements

COMPILING, LINKING AND RUNNING
While the basic installation procedure is simple enough, there a few fine points that may need attention.
The first of these is the file NICRAPAR.FOR. This file is included in the code via an include statement

to the compiler and determines the dimension of several variables. The d u e here to be concerned about is
the maximum number of shells. The default value is set a t 6 shells. For a different number of shells, see the
table below.

Before you set the number of shells to the maximum, keep in mind the size of the executable module
that results!

The value for the variable MAXDIM to change in the file is shown in the table.

MAX N
4
5
6
7
8
9
10
11
12

MAX DIM MODULE SIZE
2 2 0.1 MBytes
34 0.2
50 0.3
70 0.4
95 0.6
125 0.9
161 1.5

203 2.2
252 3.2

Secondly, if your system is not a VAX you will need to rewrite the include statements in NICRA.FOR.

OBTAINING RESULTS / NOTES
As the program is written. NICRA expects to receive input from the terminal. A much more effective

method is to run the program as a batch job, inserting the batch commands into the input file. Output is
written to a text file.

The best method to use to run the program for different data set is to write a small batch file, then add
it to you data sets before submitting the job. Processing takes about 2-15 minutes of cpu time depending
on the number of shells and other parameters.

The amount and type of output the program produces can be controlled by changing values in the input
file of the variables IN-LEV and LEV-PRINT.

A listing of input parameters as well as a sample input file appear in the text for reference.

The authors provide two examples in the files INPUT1.DAT and INPUT2.DAT. The first example shows
how to construct a single particle diagram that is a plot of single orbitals M a function of angular speed of
rotation. About 5 minutes of cpu time ia required for thin calculation using the values for LEV-PRINT in
INPUTl.DAT file. The plot in Fig. 3.3 in the text can be produced simply enough by making a copy of
the output file, formatting the necessary date correctly with labels and commands for TELL-A-GRAF or
another similar graphics package.

The second example is an investigation of the triaxiality of the nucleus of 160 [Yb] as a function of spin.
This run takes approximately 25 minutea of cpu time to complete. The graphs appearing in Fig. 3.4 can be
produced in the same manner at the previous example.

a TUTORIAL
In this example we will run the program using the default number of shells, MAXN=6. The instructions

to use more or fewer shells are given above. First, set the default directory to chapter 3 and compile the
Fortran file NICRA.FOR. Then link the resulting object file. There is no need to worry about including
the files NICRAPAR.FOR and NICRAINC.FOR as this is done automatically for VAX systems via include
statements in the main code.

8 FORTRAN NICRA.FOR
8 LINK NICRA.OBJ

Note that the other codes should not be compiled because they are done via an INCLUDE statement
M mentioned above.

Because the programs need a large amount of input data entered, it is best to run them as a batch
job with the command $ RUN NICRA placed a t the top of 1NPUTl.DAT. Then change its name say to
BAT.COM and submit it as a batch job.

The second example can be run in the same way as the first. It is a good idea to use a different set of
files for each run.

CHAPTER 4

THE RANDOM-PHASE-APPROXIMATION FOR COLLECTIVE EXCITATIONS

a ABSTRACT
The main code for thia chapter is RPA.

a FILES
RPA.FOR - Fortran source code for the program

a COMPILING, LINKING AND RUNNING
This is most likely the easiest to use program in the text. Simply compile it, link it and run it. Input

is read from the keyboard, output goes to the terminal.

OBTAINING RESULTS / NOTES
When the program has been started, it waits for input. Simply type the input data on you terminal

using the format given in table 4.1 in the text. The output will appear on the terminal also. The session
can be captured for later review/analysis of output by using set host to record in a log file.

a TUTORIAL
Set the default directory to chapter 4, compile and link the program RPA.

8 FORTRAN RPA.FOR
$ LINK RPA.OBJ

Then start the program and input the parameters. The values shown are for the example of 16 [O] given
by the author.

8 RUN RPA
0.25,50
16,8
1,3,1,0
-1,0,0,0
10,0.5
-1 100,15000,0.5,0.93
1,0,40,1,1
0

CHAPTER 6

THE PROGRAM PACKAGE PHINT FOR IBA CALCULATIONS

a ABSTRACT
In the IBA model two different bosons are considered: the s- and d-boson. The program PCIBAXW cal-

culates excitation energies and wave functions; PCIBAEM calculates electromagnetic transitions; CFPGEN
is the code to generate coefficients of fractional parentage (CFPs).

a FILES
PCIBAXW.FOR - Main program and some subroutines in Fortran for calculation excitation energies

and wave functions
PCIBAEM.FOR - Electromagnetic transition matrix elements and probabilities main code
CFPGEN.FOR - Main Fortran code for generating CFP file
PCIBALIB.FOR - Library of subroutines commonly used by codes
ANGMOM. FOR - Routines for calculating angular-momentum recoupling brackets
DIAG.FOR - Routine for the diagonalisation of a real symmetric matrix
PCIBAEM.OUT - Sample output files PCIBAXW.OUT

COMPILING, LINKING AND RUNNING
The six Fortran source files, PCIBAXW.FOR, PCIBAEM.FOR, CFPGEN.FOR, PCIBALIB.FOR,

ANGMOM.FOR and DIAG.FOR, should first be compiled separately resulting in six object files. Next
link the object files M shown:

PCIBAXW.OBJ to DIAG.OBJ, PCIBALIB.OBJ and ANGMOM.OBJ
PCIBAEM.OBJ to PCIBALIB.OBJ and ANGMOM.OBJ
CFPGEN.OBJ to ANGMOM.OBJ
At this point the result should be three executable files.

OBTAINING RESULTS / NOTES
All three programs are set up to accept input from the terminal and write their output to a file. The

author of the code has provided full prompting for each input data item, making the programs easy to use.
A table describing the input parameters is given in the text.

Program output is written to a file with the name of the program followed by .OUT . Before running
the two main programs, run CFPGEN to create the file PHINT.CFP. For applications, run PCIBAXW to
generate spectra followed by PCIBAEM to generate transitions rates. The authors provide sample output
files.

Since output is written to the same file, the scheme of renaming the output file will be necessary to save
results for future use.

How to calculate for a single nucleus:
1. Determine the number of bosons. The number of bosons is equal to the number of fermion pairs

outside a closed shell. As an example, take 104 46 [Pd] 58. Here,

Neutrons: -4 fermions +2 bosons
Protons : +8 fermions +4 bosons
Total : +6 bosons

2. Determine the strategy: which limiting case? For a more rotational-like spectrum it is better to use
multi-pole operators while for a vibrational case the appropriate method is not to use the multipoles but to

define the Hamiltonian in terms of HBAR, C, F and G.
3. Fit the parameters in the Hamiltonian Make a first guess of the parameters using the analytic formula

given in the text.
4. You are now ready to run PCIBAEM. Several recipes for these runs are given in the text.

TUTORIAL
Begin by compiling the six Fortran source code files.

$ FORTRAN PCIBAXW.FOR
$ FORTRAN PCIBAEM.FOR
$ FORTRAN CFPGEN.FOR
$ FORTRAN PCIBALIB.FOR
$ FORTRAN ANGMOM.FOR
$ FORTRAN DIAG.FOR

After the six object files have been generated, link the files as shown here.

$ LINK PCIBAXW.OBJ, DIAG.OBJ, PCIBALIB.OBJ, ANGMOM.0B.I
$ LINK PCIBAEM.OBJ, PCIBALIB.OBJ, ANGMOM.OBJ
8 LINK CFPGEN.OBJ, ANGMOM.OBJ

Next, you will need to run CFPGEN to create the file PHINT.CFP

$ RUN CFPGEN.EXE

In this last section, a sample input for PCIBAXW and PCIBAEM is shown. The programs are com-
pletely self-prompting and therefore easy to use. Only the responses are shown. These examples can be
found on pp93-97 of the text.

EXAMPLE 1 : USING PCIBAXW
[R] means press RETURN or ENTER

8 RUN PCIBAXW.EXE
N [Rl
7 [Rl
Y [Rl
0.5 [R]
[RI
-0.1 [R]
[Rl
PI
[Rl
[Rl
[Rl
IRI
PI
y [RI
4 [Rl
EXAMPLE 2 : USING PCIBAEM

In this example note that E2 must be entered in UPPERCASE letters.

8 RUN PCIBAEM.EXE
E2 PI
PI
2 [Rl
1 PI
0 [Rl

-2 PI
1 [Rl
0 PI
I00 [R]
s IRI
Note: Pressing return [R] in response to a prompt instructs the program to use the default value for

that parameter (see the text for the default values).

CHAPTER 8

NUMERICAL APPLICATIONS OF THE GEOMETRIC COLLECTIVE MODEL

ABSTRACT
The main code for thia chapter is GCM.

FILES
GCM.FOR - Fortran source file for main program
ANGP.DAT - Data file provided that contains the parameters for the Hamiltonian
ANGQ.DAT - Data file provided that contains corresponding values of matrix elements for quadrupole

operator.
1NPUT.DAT - Sample input file for calculations with 186 [Os]
PARA. DAT - Parameters data file of Hamiltonian

COMPILING, LINKING AND RUNNING
To run the GCM code, the IMSL Fortran Library is required.
Compiling and linking the code is fairly straightforward. There is one source file GCM.FOR which

should be compiled and the object file linked to the IMSL library. The program is then ready to use.

OBTAINING RESULTS / NOTES
The program expects to read the files ANGP.DAT and ANGQ-DAT from units 20 and 21. Thus, you

should copy these files as shown below:

copy ANGP.DAT to FORO2O.DAT copy ANGQ.DAT to FORO2l.DAT

As the example is set up, the code expects to read Hamiltonian parameters from unit 40. These
parameters, which for the example are provided in the file PARA.DAT, can be read or calculated depending
on the value of the variable IFPARA in the first line of the input file. To use the example as

it stands, copy PARA.DAT to FORO4O.DAT.
The program expects to read input from the terminal, and thus it is suggested to run the program as a

batch job using the input from a file to avoid typing errors since the program doesn't provide much in the
way of error correction. Create a batch file to run the program, then append the given input file to it.

Output from the program is written to a file named OUTPUT.DAT, which includes a rudimentary
graph meant for line printers. However, data from the output file can be used with relative ease to create
plots of the type shown in the text by using TELL-A-GRAF or a similar graphics package.

TUTORIAL
We will begin by setting the default directory and compiling the Fortran code. Then the object file is

linked to the IMSL library.

$ FORTRAN GCM.FOR
$ LINK GCM.OBJ, IMSL/LIBRARY

Next, the input data files must be copied into appropriate Fortran unit files.

$ COPY ANGP.DAT FORO2O.DAT
$ COPY ANGQ.DAT FOR021.DAT
$ COPY PARA.DAT FORO4O.DAT

As the final step before running the program, create a batch file and append the input file to it. This
will allow you to run the code for the 186 [Os] example given in the text.

Create a batch file named, for instance, GCMEIRST-TRY.BAT, using a editor It should contain

$ RUN GCM
$ APPEND 1NPUT.DAT GCM-FIRST-TRY.BAT

Now run the program and the output is written to 0UTPUT.DAT Remember that we are running it
in batch mode.

$ SUBMIT/LOG-FILE=[... KOONIN.CHAPTER-6]GCM.LOG/NOPRINTER GCM-FIRST.BAT

The SUBMIT qualifiers used should be familiar by now.

THE RELATMSTIC IMPULSE APPROXIMATION

ABSTRACT
The main codes for this chapter are TIMORA, FOLDER and HOOVER.

FILES
TIMORA.FOR - Fortran code for the first section of the procedure that generates scalar and bayeron

densities for neutrons and protons.
FOLDER.FOR - The Fortran code for the second section of the procedure that processes the densities

into Dirac scalar and vector optical potentials.
HOOVER.FOR - Fortran code for the final program segment that takes input from FOLDER and adds

coulomb potentials and computes the observable scattering.
TIMORA.INP FOLDERJNP - Example Input and output files provided by the author

COMPILING, LINKING AND RUNNING
The three Fortran codes should be compiled and linked separately. To ensure correct results it is

suggested that the three programs be run as described below.

OBTAINING RESULTS / NOTES
First, run the program TIMORA. It will display the status of the run on the terminal. Next, run

FOLDER, which will advance the solution a second step. Then, as a final step, run HOOVER. The total
cpu time required to complete the run using the sample input data in the text wss about 5 minutes.

It is up to the user to decide whether to run the codes in a batch file or interactively. It might be
beneficial to run the programs all as a single batch job when large input data sets are to be processed or else
there are large calculations to be done as these can require anywhere from 15 minutes to about 4 hours cpu
time for any reasonable calculations that might be desired.

TUTORIAL
As usual, set the default directory, then compile and link the three separate code segments.

$ FORTRAN TIMORA.FOR
$ FORTRAN FOLDER.FOR
$ FORTRAN HOOVER.FOR
$ LINK TIMORA.OBJ
$ LINK FOLDER.0B.J
$ LINK HOOVER.OBJ

The second step after the programs have been compiled and linked is to run them in order. Results are
displayed on the terminal as the programs run to let the user know the status of the programs, any final
output is written to data files in a text format.

So, now simply run the programs.

$ RUN TIMORA.EXE
$ RUN FOLDER.EXE
$ RUN HOOVER.EXE

CHAPTER 8

THREE-BODY BOUND-STATE CALCULATIONS

ABSTRACT
The main code for this chapter is TRIMOD. This is the only chapter where we have modified our codes.

We have done this so that they run with the IMSL library rather than the NAG library.

FILES
TRIMOD.FOR - Source code for the Fortram program

COMPILING, LINKING AND RUNNING
As the code was orginally written, the NAG Fortran library is required. Since it is apparently not

widely-used in the United States, we have modified the code to use IMSL procedures instead. The basic
modifications included substituting the IMSL Gaussian quadrature subroutine for the NAG version used in
the original code. The other NAG routine used was one that solved a linear system with multiple right
hand sides. Since there was no directly corresponding routine in the IMSL library, we used IMSL's LU-
factorization routine first, then used a loop to solve each right-hand-side using a single RHS linear system
solve procedure. This is implimented with the subroutine MRHSLS added to the end of the code.

OBTAINING RESULTS / NOTES
The program writes output to the screen. In order to save this for future use, it is convenient to use the

SET HOST command with the qualifier /LOG-FILE= in order to capture the output in a specific file.

TUTORIAL
First set the default directory, then compile the code and link it to the IMSL Fortran library.

S FORTRAN TRIMOD.FOR
8 LINK TRIMOD,IMSL/LIB
$ RUN TRIMOD.EXE

CHAPTER 0

VARIATIONAL MONTE-CARL0 TECHNIQUES IN NUCLEAR PHYSICS

ABSTRACT
The main code for this chapter is VARMC.

FILES
VARMC.FOR - Fortran source code file for the simulation program
VARMCH3.IN - A sample input file provided by the author
VARMCH3.OUT - An example output file provided by the author

COMPILING, LINKING AND RUNNING
The actual procedure for getting the code installed is relatively simple: the source code is compiled to

give an object code file which is then linked to give the executable program.

OBTAINING RESULTS / NOTES
All input to the program is through the file VARMCH3.INP Program output is written to several data

files in a text format. See the text for a full description of the input parameters.

TUTORIAL
First, select the default directory and compile, then link the program file.

$ FORTRAN VARMC.FOR
$ LINK VARMC.OBJ

Now you are ready to use the program. It should be run in batch mode with the command $ RUN
VARMC placed a t the top of the VARMCH3.IN file. Also the header in this file MUST be removed in order
for the program to run properly. Rename the whole file to JOB.COM and then submit as a batch job.

CHAPTER 10

ELECTRON-SCATTERING FORM FACTORS AND NUCLEAR TRANSITION DENSITIES

ABSTRACT
The main codes for this chapter are ELHO, MAHO, WSAXE and WSAXM.

FILES
The first four files here are source code for the four main programs

PROGRAM FILE WAVE FUNCTION TYPE OF TRANSITIONS

ELHO.FOR HARMONIC OSC ELECTRONIC
MAHO.FOR HARMONIC OSC MAGNETIC
WSAXE.FOR WOODS-SAXON ELECTRONIC
WSAXM.FOR WOODS-SAXON MAGNETIC

ELLIB.FOR - Library of math subroutines required by most of the code
The authors have also included several sample input files to allow the programs to be run right away.

The user will need to supply data for WSAXE and WSAXM to run the example for these.

COMPILING, LINKING AND RUNNING
The Fortran source code files are compiled separately and then the files are linked as foUows:

ELHO.OBJ is linked to ELLIB.OBJ
MAHO.OBJ is linked to ELLIB.OBJ
WSAXM.OBJ is linked to ELLIB.OBJ
WSAXE.OBJ is linked to ELLIB.OBJ

Input is expected to be read from the terminal, which makes the use of batch processing convenient;
output is done with data files in text format.

As we have described in previous section, the most convenient method to use in running the prograams
is to append the input data set to a standard batch file.

OBTAINING RESULTS / NOTES
Since the codes require that input come from the terminal, running the programs in the batch mode

using the input files added (appended) to the batch file is the easiest method to obtain results with the
minimum of fuss.

TUTORIAL
Begin by setting the default directory, then compiling and linking the program segments.

$ FORTRAN ELHO.FOR
$ FORTRAN MAHO.FOR
8 FORTRAN WSAXE.FOR
$ FORTRAN WSAXM.FOR
$ FORTRAN ELLIB.FOR
$ LINK ELHO.OBJ, ELLIB.OBJ
$ LINK MAHO.OBJ, ELLIB.OBJ

$ LINK WSAXE.OBJ, ELLIB.OBJ
$ LINK WSAXM.OBJ, ELLIB.OBJ

Then run ELHO and MAHO First, you will need to create batch files for this purpose. Call them, for
example, JOBl.COM and JOB2.COM

The file JOBl.COM should contain

$ R U N ELHO

and likewise, the file JOB2.COM should have the corresponding commands

$ RUN MAHO

To use the example data files, append them to the batch files.

$ APPEND ELHO.INP JOBl.COM
$ APPEND MAHO.INP JOB2.COM

Then submit each job to run ELHO and MAHO.

See the text for descriptions of the required input data for running WSAXE and WSAXM. They are
run using the same procedures as shown above.

