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Introduction

In the upcoming era of permanent occupation of
space by humans, the problem of adequate protec-

tion from cosmic rays assumes greater and greater

importance. An extensive research program is cur-

rently underway (ref. 1) to address this concern. In

particular, this program is concerned with the calcu-

lation of cross sections describing the interaction of

galactic cosmic ray nuclei with target nuclei.

In the present work, we wish to show how to

set up the general formulas for these cross sections

(once the T-matrix elements are known) and how
to obtain and handle the appropriate normalization

volume elements which occur in the phase space and

wave functions. More importantly, however, we wish

to show how to calculate the correct phase space
factors for two- and three-body final states. We shall

present these calculations for both Lorentz-invariant

and noninvariant phase spaces (ref. 2) and shall also

show the equivalence of the two approaches that use

energy derivatives and energy delta functions.

The purpose of this report is to present the results
of diverse phase space calculations in a consistent

and unified manner. All too often the results of

phase space calculations are presented in different
ways depending on who is the author and what

particular reaction is being studied. Thus, when one

tries to calculate phase space factors for a particular

reaction, it is often almost impossible to use the

results of another author. Thus, a general formalism

for the evaluations of phase space factors is needed

that can be applied to any particular reaction. The
specific results of other authors can be obtained

through the use of our general results.

Cross Section

per unit time, that is,

Fi =nioi. (2)

where n i is the number of incident particles, Pi is the

incident probability density (i.e., per unit volume, so

that nip i is the number of incident particles per unit

volume), and v is the incident velocity. Frauenfelder

(ref. 3) points out that in most calculations the

number of incident particles is normalized to one

particle per volume V, that is,

/ ¢_(r)_i(r) dV = 1 (3)

Thus we shall take

ni=l (4)

Now in quantum mechanics,

1

Pi --- ¢*_i = V (5a)

consistent with one particle per volume V, whereas

in classical mechanics the probability is unity always
so that again

1

Pi = _ (55)

Thus,
v

& = V (6)

and the cross section can be written (ref. 2, p. 12)

V
a = --w (7)

v

In scattering problems (as opposed to bound state
problems) one introduces the concept of cross section

a, defined as (refs. 3-6)

w

a Fi (1)

where w is the transition rate and F i is the incident

flux defined as the number of particles per unit area

where the transition rate is given by

w = --_ ITkil2dNips (8)

where Tki is the appropriate matrix element and

dNips represents the phase space elements. The units

and volume normalization conventions are explained
in appendixes A and B.

Noninvariant Phase Space

The noninvariant phase space element (or density of states) is defined as (ref. 2)



pN--dNips(E;pl,P2,...,pN)-- d3pi 6 E- Ei 63 P- Pi

= i=1 i=1
(9)

(This definition of dNips differs slightly from that given on p. 388 of ref. 7). Frauenfelder (ref. 3) writes this as

N-1

[v_Z_]N-' d 1-I. p,PN = [(2 h)3J .=
(lO)

where E is the total energy of the final-state particles. In this version, the di(E N- _i=lEi) has been replaced

with d/dE and the 63(p - _iN=lpi) has been taken into account by using 1-IN__ 1 in equation (10) rather

than the VIN=I in equation (9). Although Frauenfelder's version in equation (10) gives the same results as

equation (9), we do not recommend its use because the inclusion of energy conservation is very obscure (being

much more transparent and automatic in eq. (9)) and elementary errors are all too easy to make, such as

bringing kinematic factors outside the momentum integrals when they should remain inside. We recommend

using equation (9) to evaluate phase space factors, and we shall illustrate how to use it in the following sections.

Two-Body Phase Space

The two-body density is

dNips(E; Pl, P2) --

2

W fd3pl d3p2 6(E_E12) 63(p_Zpi)
(27rh)3 i=1

V f d3pl _(E - El2)(2 h)3

(2 h)3 p2 epl EI ) eal (11)

with

El2 - E1 + E2 (12)

From appendix C, we have

1 E1E_

dpl = p]c2 E1 + E_2 dE12 (CM12) (13)

which is valid in the center of mass of particles 1 and 2 (CM12). Note that E L is identical to E2, but is now

defined in a certain way as detailed in appendix C. Thus, equation (11) becomes

V f/Pl EIE_dNips(E; Pl. P2) - (27rh) 3 c 2 E1 + E L 6 (E - El2) dE]2 d_l
(14a)

V 1 [ E1E_ .,..

- (2rh)3 c2 jpl_ll-_a.1 (14b)

(Note the concerns raised in appendix D). However, there is something perplexing about equation (14b). We

have supposedly integrated over dpl; yet Pl is still a variable in equations (14), both explicitly and also in

El and E_. This is resolved by considering the following. Energy conservation is required in equations (14)

through 6(E - El2 ). (Momentum conservation is also included through 63(p 2- _-_i=lPi)-) In the CM frame,

this implies that p_ = p22, as shown in appendix C.

2



Thus.weneedto expressPl as a function of El2, that is,

Pl = pl(E12)

and then because

we have

(15a)

E1 = EI(Pl) (15b)

G = E_(m) (1_c)

E1 = El(E12) (15d)

EL = E_(E12) (15e)

Thus all terms in the integrand of equation (14a) are functions of E12, and the _(E - E12) can then be

incorporated nicely.

Consider the nonrelativistic limit in the CMI2 frame. Then because p2 = p2 we have

E12 = 2p._Al + .2p_AI _ Pl2 (CM12) (16)
2ml 2m2 2/_

so that

pl = p1(E12)=

where # is the reduced mass of particles 1 and 2. Consequently,

(17)

El- p21 - #El2 (18a)
2ml ml

p2 _ _E12 (18b)
E_ - 2m 2 m2

so that

EIE12 V_, ,-, ,3/2

where M is the total mass of particles 1 and 2. Consequently, equation (14a) becomes

(19)

dNips(E; Pl, P2)NR =
(27rh) 3 c2 #3/2 (El2) 3/2 dE12 tS(E - El2) df]l

v lv_(_E)3/2fdt2 '(27rh)a c_
(20)

where E is the total initial (or final) energy and NR denotes the nonrelativistic limit.

An important comment is in order. Why write the perplexing equation (14b) when things worked out so

clearly in equations (15) to (20)? Why not follow the latter procedure always? The answer is that this latter

method worked only because we have a simple, analytic expression, equation (19), for the kinematic factor.

This is generally not the case. It might often be more convenient to leave dNips in the form of equation (14b)

and, in conjunction, separately write the very complicated expressions for Pl(E12), El(E12), and E_(E12)

which are to be inserted into equation (14b).



This is illustratedby consideringthe relativistic evaluation of the two-body kinematic factor considered in

appendix E.

Three-body Phase Space

The three-body density is

with

From appendix F we have

dNips(E; Pl, P2, P3) - (27rh) 6 d3pl d3p2 d3p3 _(E - E123) _3 p _ Z Pi
i=1

y 2
- f d3pl d3p2 _(E - E123)

(2 h)6 J

(21)
y 2

_ [[ p2 dp 1 6(E - E123) dF/1 d3p2
(2 h)o dd

E123 _ E1 + E2 + E3

i E1E' 
dpl = pie2 E,3 + (1 + p2/Pl cos 012)E 1 dE123

(22)

(CM123) (23)

where 012 is the angle between particles 1 and 2. Thus equation (21) becomes

V2 [[ Pl E1E_

dNips(E; Pl, P2, P3) - (2rh) 6 ]] c2 E_3 + (1 + P2/Pl cos 012)E1

Pl = pl(E123,P2)

Evaluation of the kinematic factor gives

and then because

we have

E1 = E1 (E123, P2)

El3 = E_(EI23,P2)

The P2 that appears here is consistent with the integral over d3p2 in equation (24).

Evaluating the three-body phase space in the nonrelativistic limit, we have

El23 = 2/_1-----_ 2_23 -f"

mirnj

l_iJ = m i + rnj

PlP2 cos 022

m3

_i(E - E123) dE123 d_l d3p2

where

4

(24)

(25a)

(25b)

(25c)

(25d)

(25e)

(26)

(27)



Solvingfor Pl in equation (26), we have eliminated the variable Pl through

Pl = Pl (E123, P2)

1 P2 cos 012

#13 m3 • .3 ,1,' ,-)] (28)

which is analogous to equations (17) and (El7). One now simply substitutes equation (28) into equations (25b)

and (25c) and these results into equation (24). That is, one follows exactly the same procedure that we used

for the two-body case in equations (18) through (20). Clearly the final result is an algebraic monstrosity and is

best handled by computer code. One must be very careful about the signs for the square root in equation (28).

We consider the relativistic three-body problem in appendix G. Ultrarelativistic kinematics are presented

in appendix H for both two-body and three-body problems.

Dalitz Plots

The Dalitz plot refers to three-body decays and tells us the kinematical distribution of particles 1 and 2

due to phase space alone. Any deviation from the phase space diagram is due to variables in the T-matrix. An

excellent intuitive discussion of Dalitz plots is given by Leon (ref. 4, pp. 145-147) and Pilkuhn (ref. 8, p. 160).

The three-body density given in equation (21) is written now as

v' (29)dNips(E; Pl, P2, P3) -- (27rh) 6

Recalling that 012 is the angle between particles 1 and 2, we can write (ref. 4, p. 57; ref. 9, p. 99; ref. 10, p. 329)

V 2

ff p2p_dpl d(cosO12)tS(E- (30)dNips(E; Pl, P2, P3) - (2_--_8¢r2 dp2 E123)

In equation (21) we replaced dpl with a function of dE123. In equation (30) we replace d(cos012) with a

function of dE123 and replace dpl and dp2 with functions of dE1 and dE2, respectively. From appendix D, it
is evident that

dpl = El dE1 (31a)
Pl

However, equation (F4) gives

so that

dp2 = E2 dE2 (31b)
P2

d(cos012 ) _ E123 ar_
p1--_2C2"u_._123 ( 32 )

V 2 87r 2//dNips(E; Pl, P2, P3) - (27rh) 6 c2 E1E2E123 dE1 dE2 dE123 _ (E - E123)

V 2 87r2 f

-- (2rh)6 _-_ E] E1E2dE1 dE2 (33)

This, of course, is not the usual form of the Dalitz phase space, which is written using dLips where the product
E1E2 in equation (33) does not appear. (See the subsequent section on the Lorentz-invariant form of Dalitz

plots.)
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Recurrence Relations

The density of N-body final states can often be simplified in terms of products of two-body densities.

Consider, for example, the reaction NN ---+ NA _ NNr, where N represents a nucleon, 7r a pion, and A

an isobar. Normally we would simply write the three-body density dNips(E, pN,PN,p_), especially if the

square of the T-matrix t_']TknGniTnil 2 cannot be simplified. However, if the full T-matrix simplifies to
n

ITknl21Gnil2Tnil 2, then the full cross section for NNTr can be written as a product of cross sections for
B

forming NA and A ---, Nor. Schematically this is

aNN_NNn ,_ l _n TknGniTni 2 (34)

However, if

aNN_NNTr "_ E ITknl21cnil2lT'_il2 (35)
n

then

O'NN_NN_ r ,_ (aNN_.NA)(aA---_Nr) (36)

This equation shows intuitively that one might break the three-body factor dNips(E; PN, PN, Pr) into a product

of dNips(E; PN, PA) and dNips(E; PN, P_r). The result for three bodies is (ref. 2)

dNips(E; Pl, P2, P3) = dNips(E; Pc, P3) dNips(Ec; Pl, P2) dEc (37)

and for four bodies is

dNips(E; Pl, P2, P3, P4) = dNips(E; pc, Pd) dNips(Ec ;Pl, P2) dNips(Ed; P3, P4) dEc dEd (38)

where dEc and dEd represent integration over the "nonobserved" particles. These equations can easily be

generalized for N bodies.

Finally we note that even though the process NN --_ NA ---* NN_, where we have a well-defined

intermediate state, may be occurring, the T-matrix may not break up as in equation (35), and so the best

method would be not to use a recurrence relation, but rather the full three-body phase spaces developed earlier

in the text.

Lorentz-lnvariant Phase Space

We shall now repeat all the results thus far obtained and write them in terms of Lorentz-invariant phase

space elements. (In this section we set h = c = 1.) The Lorentz-invariant phase space elements are defined as

(refs. 2, 8, and 11)

d3p (39)
dLips(E;pl,p2,...,pN) ----(2r) 4-3N -_i ] P- Epi

= i=l

This definition is (2r) 4 times the definition of reference 12. Note that the essential difference between dNips

(eq. (9)) and dLips is the appearance of d3pi in dNips as opposed to d3pi/Ei in dLips. This, in fact, makes the

expressions for dLips somewhat simpler.

Two-Body Phase Space

The two-body density is

f d3pl d3p2t_ (E - El2) 63(p - P12)dLips(E;pl,P2) - 4(2_.)2 E1 E2
(40)

6



with
P12= Pl +P2 (41)

Equation(40)becomes
1

dLips(E;pl,p2)- 4(27r) 2 / _125(E-E12)dE12d_1

analogous to equation (14a). In the nonrelativistic limit this is

(42)

1 fi2, 
dLips(E;pl,P2)NR- ) f dill (43)

analogous to equation (20). The relativistic expression is obtained by substituting equation (El7) into

equation (42) and is much simpler than the dNips expression. We give it as

1 1 4[E2 (m I -t- m2) 2] Is 2 (ml- m2) 2] f d_ldLips(E; Pl, P2)ReI -- 4(27r) 2 2E 2 -
(44)

Three-Body Phase Space

The three-body density is

/ d3pl d3p2 d3p3 6(E - E123) _3(p _ P123) (45)
1

dLips(E;pl,P2,P3)- 8(27r) 5 E1 E2 E3

with

P123 = Pl + P2 + P3 (46)

Equation (45) becomes

1 f Pl 1 5(E - E123) dE123 df_l d3p2 (47)dLips(E;pl,P2, P3) -- 8(2ze) 5 E 2 E_ + (1 +P2/Pl cos012)E1

and evaluation of the kinematic factor proceeds by substituting equation (28) into equation (47) for the

nonrelativistic case. The relativistic case is considered in appendix G.

Dalitz Plots

The Dalitz plot form of the three-body density is treated in equations (29) through (33) for dNips. The

Lorentz-invariant form is evaluated in exactly the same manner. The result is particularly simple

dLips(E; Pl, P2, P3) = f dE1 dE2 (48)

which is the usual form (refs. 4, 8, and 12) for the Dalitz plot.

Recurrence Relations

The Lorentz-invariant recurrence relations are considered in references 2, 8, and 12. The result for three

bodies is
1

dLips(E; Pl, P2, P3) = _2-_ daips(E; pc, P3) dLips(Ec; Pl, P2) dEc (49)

and for four bodies (ref. 2) is

1

dLips(E;pl,p2,p3,P4) = _dLips(E;pc,pd) dLips(Ec;pl,p2)dLips(Ed;P3,P4)dEcdEd (50)

7



Concluding Remarks

Methods of constructing phase space factors for two- and three-body densities have been presented for use

in nuclear collision studies. Included in the discussion are methods for obtaining Lorentz-invariant ones. The

factoring of higher order phase space factors into products of lower order ones was also presented for use in

simplifying nuclear cross section calculations.

NASA Langley Research Center

Hampton, VA 23665-5225
September 1, 1988



Appendix A

Units

Consider the units of the quantities in equa-

tions (5) through (8). The units of Tki are seen from

Tk_ = <kltii>

/.= _ktOi dV (A1)

and using box normalization as in

i (A2)
_i = _e

we see that the volume terms in equation (A1) cancel

so that the units of Tki are Energy. (Note that

instead of Tki, we can have terms like TknGniTn;
where G is Green's function with units (Energy) -I

which cancel with the units of Tni, so that TknGniTni

has the same units as Tki, namely Energy). Looking

at equation (9), we see that the units of dNips are

always (Energy) -1, no matter how many bodies are
in the final state. Thus equation (8) can be written

schematically as

c (Energy)2 1 (A3)
w cx hcc Energy

which gives the correct units for w of (Time) -1

Clearly then a, in equation (7), has units of

(Length) 2.

In the above discussion, we have considered _ as

a one-body wave function with normalization 1/v_.

However, in a reaction _i is typically a two-body

state (beam plus target) and @k an N-body state.

Consider a two-body final state. In'second quantized

form the (composite) two-body potential operator is

(ref. 13)

1

T = _ E E <ijltlkl>a+a; ala k
ij kt

iCj
k¢1

(A4)

where

ff

<ijltlkl> = H _*(rl)¢_(r2)t(rl' r2)Ok(rl)¢l (r2) d3rl d3 r2

J ,J

(AS)

so that obviously the units of <ijltlkl> are still

Energy. The operators a and a + have no units,

so that T has units of Energy. When we take

composite matrix elements as in nucleus-nucleus

collisions, for example, <PoToITIPoTo>, we

eventually obtain <PoTolTIPoTo> in terms of

<kp(P)lT(T)ltlkp(P)lT(T)> (see eq. (36) of ref. 13)
so that the units of <PoTolTIPoTo> are still obvi-

ously Energy. What happens when more than two

particles are present in the final state as in the re-

action NN --, NA ---* NNTr (ref. 14)? The matrix

element is of the same form TknGniTni , which can

be written schematically as

[<NI( <NI<_rlTIA > )tN>]

x I<Ni<AIGIN>IN>][<NI<AITIN>IN>] (A6)

From our consideration of <ij[t[kl>, which we found

to have Energy units, it is clear that Gni and Tni still
have units of (Energy) -1 and Energy, respectively.

The only concern is the extra 1/v/V units carried by

the newly created state <_r I. These units, however,

are canceled by extra units carried in the pion-
nucleon interaction.

Let us summarize the ideas presented above. No

matter how many bodies are present, Tki always has

units of Energy. If Tki is replaced by terms such

as TknGniTni , it still has units of Energy, again no

matter for how many bodies. The units of dNips

are always Energy. Consequently w, as defined in

equation (8), always has units of (Time) -1 and cr
units of (Length) 2.

9



Appendix B

Volume Normalization

This appendix represents a continuation of the

concerns raised in appendix A, where we established
that our methods resulted in a consistent system

of units. Here we are interested in the explicit

cancellation of the volume factors V appearing in the

expressions for a (eq. (7)), dNips (eq. (9)), and the

wave function • (eq. (A1)). One might question why

one should worry about volume factors V canceling

when the units have already been established as
correct. The answer lies in how one actually takes

limits in box normalization.

Consider the cross section expression from equa-

tions (7) and (8)

v2 fa - - ITkil 2 dNips (B1)
v h

where (ref. 3)

dNips o¢ V N-1

dNips o¢ V

(For N >__2) (B2a)

(For N = 1) (B2b)

We write a schematically as

a = (Vli>2)(<kl2V N-l) (B3)

Now consider a one-body initial state and one-body
final state. Then

Ii> 2 o¢ 1/V (B4a)

<kl 2 o¢ 1/Y (B4b)

so that combining equations (B2b), (B4), and (B3),
we see that the volume terms cancel. Now for a two-

body state we do not write If> 2 c¢ 1/V 2 because we

use a two-body center-of-mass wave function with
normalization 1/v/-V, so that equations (B4a) and

(B4b) are still valid for the two-body center-of-mass
reduced wave function. From equation (B2a), it is

clear that the volume terms again cancel.

Let us be a little more specific for the two-body

case. Consider nucleus-nucleus scattering and write

Ii> = I¢>lPo>lTo > (B5)

where ]i> represents the total initial state; t¢> rep-
resents the wave function for the motion of the overall

CM and is proportional to 1/V_; and IPo> and ITo>

10

represent the internal states of the projectile and tar-

get, respectively, each with their own normalizations,

say 1/V_p and l/x/_. Assume that the T-matrix

separates as

t = tctpt T (B6)

so that

<k[tli> = <Ok[tOlOi><PkltpIPo><TkltT[To>
(B7)

Now for example

1 1 . (Bs)
<PkltplPo> X/ p  ktp °dVp

so that all the Vp volume terms cancel when the in-
tegrals are performed (so that taking the limit as Vp

approaches co provides no difficulties). Let us con-
clude then that all matrix elements connected with

the internal states do not display V factors explic-

itly. However, for the CM states in <'I_klTo[¢i>,
the cross section a is defined in terms of the normal-

ization of I¢i>, which is why the V factor appears

explicitly in equations (5) to (7). Clearly the 1/v_

factor of [_i> (when squared) always cancels the V

factor of equation (7) because of the way they were

defined originally. Similarly (in the two-body case),

the 1/v_ factor of IOk> (when squared) cancels the
V factor from the two-body dNips because again the

dNips volume factor refers to the normalization of

Iok>.
Now consider a two-body initial state with an

N-body final state. Clearly IOi> volume factors

cancel with the factor in equation (7) as before. The

N-body final state is written

Ik> = 12-body CM>IN-2 created particles> (Bg)

so that the final state has 2 + (N - 2), that is, N

particles, in the final state. However, 12-body CM>

carries only a 1/x/V factor (as in eq. (S4b)), whereas

the created particles each carry a 1/v/-V factor. (The

two-body CM is like a single reduced particle as

explained previously.) Thus,

1cx _1 "_N-2 (m0)



so that

1 (Bll)
<kl 2 CX vN_I

which always cancels the V N-1 from dNips, as it

should because of the way dNips is constructed.

Finally we consider Tki replaced by terms like

TknGniTni. The <k[ and li> normalizations can-

cel dNips and Fi, respectively, exactly as described

above. Any extra 1/v/-V terms arising should be can-

celed by the integrals arising in the matrix elements

exactly as described for equation (BT). We summa-

rize as follows: the normalization of li> (eq. (B4a))

must be written explicitly as 1/x/V in order to cancel

the normalization of F i. Similarly the normalization

in Ik> (eq. (Bll)) must be written explicitly to can-

cel V N-1 in dNips. All other normalizations (such

as internal states or terms arising in TknGniTni ) are

canceled as in the integrals (eq. (B8)). The appar-

ent inconsistency (i.e., [i> and <k I not canceling in

integrals) is due to our original definitions of F i and

dNips in terms of li> and Ik>.

Appendix C

Derivation of Equations (14)

The total energy of particles 1 and 2 is

El2 _ E1 + E2

= V/(plc)2+ (r 1c2)2

+ v/(p2c)2+ (m2c ) (Cl)

However Pl and P2 are not independent variables
because momentum is conserved. In the center-of-

mass frame of particles 1 and 2,

0 = Pl + P2 (CM12) (C2)

so that

p21=p2 (CM12) (C3)

Thus,

E12 = V/(plc) 2 "k- (mlc2) 2 + V/(plc) 2 + (m2c2) 2

(c4)
so that El2 is a function of only Pl, that is,

El2 = E12 (Pl) (C5)

Thus,

dE12_Odpl oplE12- Pl c2 EE I+EE2 (C M12) (C6)

It is absolutely essential here to realize that we are

now using

E_ _ _¢//(plc) 2 -t-(m2c2) 2 (c7)

and not the form of E2 in equation (C1). That

is, E_ in equation (C6) is only a shorthand for

equation (C7). We have emphasized this with the

prime on E_, which is identical to E2 except that it

is to be written as in equation (C7).

Note also that equation (C6) is obtained from the

Jacobians in appendix I (eqs. (I5) and (I6)) as

Opl _,. (c8)
dpl -- 0E1----2u_12

or

( OE12 "_-1
dpl = \ Op 1 ) dE12 (C9)

11



Appendix D

Some Technical Points

We raise some technical mathematical details now

and illustrate them with reference to the two-body

problem. They can be immediately generalized to

the full N-body integral in equation (9).

In equation (11) we had

(2)/d3pld3p2_(E-EI2) _3 P-i_=iPi

= f d3pl 5(E - E12) (D1)

where the momentum-conserving delta function elim-

inated the integral over d3p2. Note that momentum

conservation is thereby imposed on the right-hand

side (RHS) of equation (D1).
Energy and momentum are related via

El = ¢(plc) 2 + (talC2) 2 (D2)

so that

Consequently

Pl dpl = E1 dE1 (D3)

d3pl 5(E - E12 )

(D4)

The subject of the present appendix is the following

question: Why is it not correct to let 5(E - E12)

eliminate the dEl integral? Then we would obtain

/piE1 _(E - E12)dE1 dfll ,_ / plE1 dill (D5)

After all, aren't we just repeating the procedure used

in equation (D1)?

This question is very subtle, but absolutely vital

in obtaining correct results. The incorrect result in

equation (DS) is radically different from the correct

result in equations (14). The answer follows.

In the left-hand side (LHS) of equation (D1), all
the variables are totally independent. In the RHS

of equation (D1), they are not independent, but

are constrained by momentum conservation. If the

energy delta function

5(E - El2) = _(E - E1 - E2) (D6)

were such that E1 and E2 are completely indepen-

dent variables, then the procedure in equation (D5)

would be correct. However, E1 and E2 are not inde-
pendent; they are constrained by momentum conser-

vation in equation (D1). In fact in the center-of-mass
frame

- E1- E2): 6 (Z - ¢(plc)2-4-(talC2)2

(DT)

so that the combination

/ (_(E - V/(Pl¢) 2 -t-(talC2) 2

- i(plc) 2 + (m2c2) 2) dE1 _£ 1 (D8)

Thus the correct procedure (with reference to eq. (9))

is always

1. Let the 53(p - _N lpi) freely kill a d3pi
integral.

2. Then make sure that 5(E - _N=I El) kills an

integral of the form d(_N=l El) and not dE i.

Forcing item 2 to occur always guarantees the
correct kinematic factors.

12



Appendix E

Two-Body Relativistic Kinematic Factor

We define the metric tensor

g_v = g#V =

i 0 0 0

-1 0 0

0 -1 0

0 0 -1

which transforms contravariant 4-vectors A _ to covariant vectors A_ via

(El)

A# = g#vA v (E2)

Now

A v __ A°lA 1

A2 = (A °, A)

A 3

so that

[i0001iA0][A0]-1 0 0 A 1 -A 1

0 -1 0 A 2 -A 2

0 0 - 1 A 3 - A 3

and so (ref. 8, p. 2)

A, = (A 0, -A)

The scalar product of two 4-vectors is therefore (ref. 8, p. 2)

(E3)

(E4)

(E5)

A • B = A#B _ = A#g_VBv

= A°B ° - A • B (E6)

Another way to obtain the above result is simply to use complex Minkowski space

A = (A °, iA) (E7)

but this has the disadvantage of hiding the true nature of the space-time metric (ref. 15).
The energy-momentum 4-vector is

Pu = (pO,-pc) = (E,-pc) (ESa)

or again we would use

p = (E, ipc)

The magnitude of all 4-vectors are Lorentz-invariant quantities, so that

(E8b)

p2 = p . p = plzp p = E 2 _ (iPiC)2 = (mc2)2 (E9)

Now let us consider two-body kinematics. Aguilar-Benitez et al. (ref. 12, p. 58) consider two- and three-

body kinematics from the point of view of a single particle decaying into two or three bodies. They consider

13



the kinematicsin the rest frameof the decayingparticle. However,in our casewehavea reactionprocess
wheretwoparticlesin theinitial statereactto formtwoor threeparticlesin thefinalstate.However,because
theoverallcenter-of-mass(CM)frameisequivalentto therestframeof thedecayingparticle,wecantakeover
theresultsof reference12with minormodifications.

Let usdefinethetotal final4-momentumof the final-state particles 1 and 2 as

P12 = (El2,-P12C) (E10a)

and the invariant mass is

The overall CM flame is defined as

that is,

Thus

(M12c2) 2 = p22 (E10b)

P12 =0=Pl+P2

P12 = (E12, 0) = (M12 c2, 0)

(Ella)

(Ellb)

P212 = E122 = (M12c2) 2 = (Pl + P2) 2

= (mlc2) 2 + (m2c2) 2 + 2(E1E2 - Pl ' P2 c2) (E12)

but in the CM frame

Pl = -P2 (El3)

E2 = El2 - E1 (El4)

so that

E212 = (talC2) 2 + (m2c2) 2 +2 [El(E12- El)+ Ipll 2]

= (mlc2) 2 + (m2c2) 2 + 2 [El(E12 - El) + El 2 -(talc2) 2] (E15)

and thus

so that (after some algebra)

E 1 = E22 + (mlc2)2 - (m2c2)2 (E16)
2E12

IPll c = V/[E122 -(rnl -4-rn2)2c 4] [E122 - (rrtl - m2)2c 4]

(E17)

which is analogous to the result of reference 12 (p. 58).

Equation (El7) thus allows for a solution to equations (14). Although the result is not as simple as the

nonrelativistic result of equation (20), it is still a simple matter to substitute equation (El7) into equation (14b)

to obtain our solution. A computer code would best handle this.

As a final point, we stress that we have not used conservation of momentum or energy in the above analysis.

14



Appendix F

Derivation of Equation (23)

The total energy of particles 1, 2, and 3 is

E123 =El+E2+E3

= V/(plc) 2 -4-(role2) 2 -4-V/(p2c) 2 4- (m2c2) 2 -4-V/(p3c) 2 4- (m3c2) 2 (F1)

where, again, Pl, p2, and P3 are not independent variables because of conservation of momentum. In the total

center-of-mass frame of particles l, 2, and 3,

0 = Pl + P2 + P3 (CM123) (F2)

so that

= pl+ + 2p,p cos< 
where _12 is the relative angle between the momentum vectors of particles 1 and 2.

Thus

(F3)

El'/:] = i(pll) 2 4- (PllC2) 2 + i(p2c) 2 4- (rn2c2) 2

+ V/(plc) 2 + (p2c) 2 + 2pip2 c2 cos 012 4- (m3c2) 2 (F4)

so that E123 is a function of both Pl and P2, but not P3, that is,

E123 = E123 (Pl, P2) (F5)

Therefore,
dE123 0E123 0E123 dp2

- 4-
dpl c_pl Opl dpl

but

dp____2= 0
@1

because P2 and Pl are independent variables, and so

(F6)

(F7)

dE123 _ 0E123 _ pl c2

dpl Opl E1 E_

(Pl +P2 cos 012)C2
+ (CM123) (F8)

where again it is essential to realize that

E_ _ V/(plc) 2 + (p2c) 2 4- 2plP2C2COSt_12 4- (m3c2) 2 (F9)

Note again that

using Jacobian notation of appendix I.

(c3E123 _ -1
dpl = \ OPl ] dE123 (F10)

15



Appendix G

Three-Body Relativistic Kinematic Factor

Our aim is to obtain the relativistic version of

pI(E123,P2) given in equation (28). That is, we

would like the three-body version of equations (El6)

and (El7). The result is then simply inserted into

equation (24).

Proceeding as in appendix E, the overall CM
frame is defined as

Pi23 = 0 : Pl + P2 + P3 (Gla)

that is,

P123 = (E123, 0) : (M123c2, 0) (Glb)

which are analogous to equations (Ella) and (E11b).

Thus,

2 = E1223 (M123c2) 2 = (Pl + P2 + P3) 2P123 =

= p_+ p_ + p_+ _pl p2 + 2(p_+ p2) •p3

= (talC2) 2 + (m2c2) 2 + (m3c2) 2 + 2(E1E2 - Pl ' P2 c2)

+ 2 [(E 1 + E2)E 3 - (Pl + P2)" P3 c2] (G2)

analogous to equation (El2), but in the overall CM
frame

P3 = -(Pl + P2) (G3)

so that

E1223 = (talC2) 2 + (m2c2) 2 + (m3c2) 2

+ 2 (E1E 2 -Ipl llp21c 2 cos012 )

+ 2[(El + E2)(E123 - E 1 - E2)

+ (pl + p2)2_2]

= (rnlc2) 2 + (m2c2) 2 + (m3c2) 2

+2

+2

+ El2 -- (talC2) 2 + E22 -- (m2c2) 2

+ 2V_ 1 - (mlC2)2'p2'c°sO12]

analogous to equation (El5).

(G4)

(E1E2-_/E2-(mlc2)2[p2lc2cosO12)

(El + E2) (E123 - E 1 - E2)

(G5)

Thus, by solving equation (G5) for E1 as a func-

tion of E123 and [P2[, we have equations analogous

to equations (E16) and (E17). Clearly the solutions
are very complicated, and we shall not solve them

explicitly here.

Appendix H

Ultrarelativistic Kinematics

Let us evaluate the two- and three-body phase

space factors in equations (14) and (24) using ultra-
relativistic kinematics. Normally we have

E 2 = (pc)2 + (me:) 2 (H1)

but in the ultrarelativistic limit

mc2 < < pc (H2)

so that

E = pc (H3)

is the ultrarelativistic expression relating energy and

momentum (i.e., it is the expression for the photon).

For the two-body final state, in the CM frame,

the analogue to equation (16) is

El2 = (pl c) + (plc) = 2pl c (H4)

16



sothat
El2

(H5)

Consequently

so that

1

E1 = mc = -_E12 (H6)

1
E2 = _E12 (H7)

E1E; (n8)
Pl Ej + E L - 8c

Equations (H4) to (HS) are the analogues to equa-
tions (16) to (19). We substitute equation (H8) into

equation (14a) so that the ultrarelativistic expression

for dNips is

V 1 /E226(E_E12)dE12df_ldNips(E;pl,P2)UR = (2rrh) 3 8c 3

V E 2 /
= dill (H9)

_2_h)38c3

For the three-body final state, in the overall CM

frame, the analogue to equation (26) is

= + (p2e)+ cV/p21+ + 2p,p2cosO 2
(H10)

which we solve for Pl as

Pl = Pl (E123, P2)

E223 (Hll)
= 2p2c2(E,23 -4:-cos012 - 1)

analogous to equation (28) so that one would proceed
in the same manner as described after

equation (28).

Appendix I

Jacobian Transformations

The change of variables from x and y to u and v
where

x = f(u,v) (I1)

is accomplished through (ref. 16, p. 556)

//o(x,y)dxdy = //dp[f(u,v),g(u, v,j_lO(x'Y) do(u,v) u d, (I3)

where the Jacobian is defined as

ox Ox
O(x, y) _

- (I4)

This may be generalized to transform any set of

differentials via (ref. 9, p. 37)

dxl dx2 '" dxn = O(Xl,X2,'",xn)
O(Yl, Y2,'" , Yn)

with the Jaeobian

0(Xl,X2,''',Xn) _
q

O(Yl,Y2,'",Yn) --

_Yl Oz

dyl dy2 "", dyn

(I5)

(A6)
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Symbols

A

C

dNips

dLips

E

El2, E123

Fi

gUU

Gni

h

li>

Ik>

m

M

ni

N

4-vector

speed of light, 3 x 108 m/sec

noninvariant phase space element,

MeV- 1

Lorentz-invariant phase space element

energy, MeV

defined in equations (12) and (22)

incident flux, m-2-sec -1

metric tensor

Green's function, MeV-1

Planck's constant, 6.58 x 10 -22 MeV-
sec

initial state vector

final state vector

mass, MeV/c 2

total mass, MeV/c 2

number of incident particles

number of bodies in reaction; also
nucleon

P

r

t

V

V

W

6

A

0

7["

Pi

O"

4)

f_

$

momentum vector, MeV/c

position vector, m

T-matrix operator

T-matrix element

incident velocity, m-sec -1

volume, m 3

transition rate, sec- 1

Dirac delta function

isobar

angle, radians

reduced mass, MeV/c 2

pion

incident probability density, m -3

cross section, millibarns

one-body wave function, m -3/2

wave functions, m -3/2

solid angle, steradian

complex conjugate
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