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Introduction

In the upcoming era of permanent occupation of
space by humans, the problem of adequate protec-
tion from cosmic rays assumes greater and greater
importance. An extensive research program is cur-
rently underway (ref. 1) to address this concern. In
particular, this program is concerned with the calcu-
lation of cross sections describing the interaction of
galactic cosmic ray nuclei with target nuclei.

In the present work, we wish to show how to
set up the general formulas for these cross sections
(once the T-matrix elements are known) and how
to obtain and handle the appropriate normalization
volume elements which occur in the phase space and
wave functions. More importantly, however, we wish
to show how to calculate the correct phase space
factors for two- and three-body final states. We shall
present these calculations for both Lorentz-invariant
and noninvariant phase spaces (ref. 2) and shall also
show the equivalence of the two approaches that use
energy derivatives and energy delta functions.

The purpose of this report is to present the results
of diverse phase space calculations in a consistent
and unified manner. All too often the results of
phase space calculations are presented in different
ways depending on who is the author and what
particular reaction is being studied. Thus, when one
tries to calculate phase space factors for a particular
reaction, it is often almost impossible to use the
results of another author. Thus, a general formalism
for the evaluations of phase space factors is needed
that can be applied to any particular reaction. The
specific results of other authors can be obtained
through the use of our general results.

Cross Section

In scattering problems (as opposed to bound state
problems) one introduces the concept of cross section
o, defined as (refs. 3-6)

o= — (1)

where w is the transition rate and F; is the incident
flux defined as the number of particles per unit area

Noninvariant Phase Space

per unit time, that is,
F;, =n,pv (2)

where n; is the number of incident particles, p; is the
incident probability density (i.e., per unit volume, so
that n;p; is the number of incident particles per unit
volume), and v is the incident velocity. Frauenfelder
(ref. 3) points out that in most calculations the
number of incident particles is normalized to one
particle per volume V, that is,

[ #0eie av =1 3)
Thus we shall take
n, =1 (4)
Now in quantum mechanics,

. 1
pi =00 = (5a)

consistent with one particle per volume V, whereas
in classical mechanics the probability is unity always
so that again

1
hi=5 (5b)
Thus,
v
Fi=y (6)

and the cross section can be written (ref. 2, p. 12)

o= %w (7)

where the transition rate is given by

w=" [ T dNips ®)

where Ty, is the appropriate matrix element and
dNips represents the phase space elements. The units
and volume normalization conventions are explained
in appendixes A and B.

The noninvariant phase space element (or density of states) is defined as (ref. 2)



174 N-1,N N N
pN = dNips (E;p1,p2, - PN) = [W] (H d3pi)6(E—ZEi)53(P— ZPi) (9)
1=1 1=1 =1
(This definition of dNips differs slightly from that given on p. 388 of ref. 7). Frauenfelder (ref. 3) writes this as

vV N-1 d N-1 3

where E is the total energy of the final-state particles. In this version, the 6(E — vazlEi) has been replaced
with d/dE and the 83(p — Zﬁvzlp,-) has been taken into account by using Hivz—ll in equation (10) rather
than the I—[fvzl in equation (9). Although Frauenfelder’s version in equation (10) gives the same results as
equation (9), we do not recommend its use because the inclusion of energy conservation is very obscure (being
much more transparent and automatic in eq. (9)) and elementary errors are all too easy to make, such as
bringing kinematic factors outside the momentum integrals when they should remain inside. We recommend
using equation (9) to evaluate phase space factors, and we shall illustrate how to use it in the following sections.

Two-Body Phase Space
The two-body density is

|4

2
dNips(E;p1,p2) = g / &py d®ps 6(E - Eng) 6° (P - Zpi)
=1

|4

= W/d:spl 6(E — Er2)

v [ e 68— Bua) d (1)

with
Ei,=E|+ Eq (12)

From appendix C, we have
1 ElE’z

dpy = —5 =——=5dE CM
L= Ey 4 (CM12) (13)

which is valid in the center of mass of particles 1 and 2 (CMj2). Note that E} is identical to Eg, but is now
defined in a certain way as detailed in appendix C. Thus, equation (11) becomes

) Vv EIE'
dNips(E;p1,p2) = @R // %ﬁé(ﬁ: — Eq2) dEy2 dy (14a)
vV 1 ElEé

- ——=df] 14b
(2mh)3 c2 P E, + E}, ! (14b)

(Note the concerns raised in appendix D). However, there is something perplexing about equation (14b). We
have supposedly integrated over dpy; yet pp is still a variable in equations (14), both explicitly and also in
E; and E). This is resolved by considering the following. Energy conservation is required in equations (14)
through 6(E — E12). (Momentum conservation is also included through 63(p — ?zlp,-).) In the CM frame,
this implies that p% = pg, as shown in appendix C.
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Thus we need to express P1 as a function of Eyy, that is,

p1 = p1(Ey3) (15a)
and then because
Ey = E1(p1) (15b)
Ey = Ey(p) (15¢)
we have
Ey = Ey(Ey3) (15d)
E; = B} (Ep) (15e)

Thus all terms in the integrand of equation (14a) are functions of Ej2, and the §(E — E12) can then be
incorporated nicely.
Consider the nonrelativistic limit in the CM; frame. Then because p% = p% , we have

2 2 2
P1 41 Py
Epp=— 4+ 721 _ 2 C 16
12=g -+ oms 24 (CM12) (16)
so that
p1 = p1(E12) = V2uEy; (17)
where 4 is the reduced mass of particles 1 and 2. Consequently,
2
P{ _ wEp
1 2my my (18a)
2 E
2= mg = g (18b)
so that , Y
—272 _ V< 1
where M is the total mass of particles 1 and 2. Consequently, equation (14a) becomes
. Vi 1V2 5,
dNips(E; p1, pp)Ng = —or L V2 /// 3/2 -E
ips(E; p1, p2)NR @rh) 2 it (E12)*/*dE13 6(E - Ey9) df)y
|4 1 \/§ 3/2
= —_— d 2
(27(h)3 c2 M (/"’E) / Ql ( O)

where E is the total initial (or final) energy and NR denotes the nonrelativistic limit.

An important comment is in order. Why write the perplexing equation (14b) when things worked out so
clearly in equations (15) to (20)? Why not follow the latter procedure always? The answer is that this latter
method worked only because we have a simple, analytic expression, equation (19), for the kinematic factor.
This is generally not the case. It might often be more convenient to leave dNips in the form of equation (14b)
and, in conjunction, separately write the very complicated expressions for p;(E3), E; (E12), and E5(Er3)
which are to be inserted into equation (14b).



This is illustrated by considering the relativistic evaluation of the two-body kinematic factor considered in

appendix E.

Three-body Phase Space
The three-body density is

3

. v?
dNips(E; p1,p2,p3) = mevg | d°p1 dp2d*p3 8(E — E1za) 8 (P = 2P
(27h) =
VZ

=~ | &®p1 d®p26(E -
(27rh)6/ p1d°pa 6(E — E123)

V2
ooy [ P 8(B — Bran) d ey

with
Ey3s =E; + Ex+ E3
From appendix F we have

1 ElE:’;

dpy =
PL= 512 EL + (1 + p2/p1 cosB12) En

dEj23  (CMiz23)

where 02 is the angle between particles 1 and 2. Thus equation (21) becomes

p E\Ej

1 E! + E-E 3
+ 6 dE23d; d
2 B3+ (1 p2/p1 cosf12) Eq ( 123) dE123 d{21 d7p2

V2
dNips(E; p1,p2,p3) = W/f
Evaluation of the kinematic factor gives
p1 = p1(E123,p2)
and then because
E; = Ei(p1)

Ej = E3(p1,p2)
we have

E; = E1(E123,p2)

Ef = E3(E123,p2)

The pp that appears here is consistent with the integral over d3py in equation (24).
Evaluating the three-body phase space in the nonrelativistic limit, we have

2 2
p p p1p2 cos 012
Eip3 = =+ 24
2u13  2p23 m3
where o
_mny
= ——
YT my+my

(21)

(22)

(23)

(24)

(25a)

(25b)

(25¢)

(25d)

(25€)



Solving for p; in equation (26), we have eliminated the variable p; through

p1 = p1(E123,p2)

cos @ cos f12 2 2 p3
_pacosbip (Pz 1 ) 2 g (28)
msa m3 #13 \ 223

which is analogous to equations (17) and (E17). One now simply substitutes equation (28) into equations (25Db)
and (25c) and these results into equation (24). That is, one follows exactly the same procedure that we used
for the two-body case in equations (18) through (20). Clearly the final result is an algebraic monstrosity and is
best handled by computer code. One must be very careful about the signs for the square root in equation (28).

We consider the relativistic three-body problem in appendix G. Ultrarelativistic kinematics are presented
in appendix H for both two-body and three-body problems.

1

H13

Dalitz Plots

The Dalitz plot refers to three-body decays and tells us the kinematical distribution of particles 1 and 2
due to phase space alone. Any deviation from the phase space diagram is due to variables in the T-matrix. An
excellent intuitive discussion of Dalitz plots is given by Leon (ref. 4, pp. 145- 147) and Pilkuhn (ref. 8, p. 160).

The three-body density given in equation (21) is written now as

2

. 174
dNips(E; p1,p2,p3) = o—g [ P dp1dQ [ phdprdQy 6(E — Eyg3) (29)
(27h)6

Recalling that 6;7 is the angle between particles 1 and 2, we can write (ref. 4, p. 57; ref. 9, p. 99; ref. 10, p. 329)

. V2
dNips(E; p1,p2,p3) = @rh)e 8r? // pip3 dpy dpa d(cos613) 6(E — Eya3) (30)

In equation (21) we replaced dp; with a function of dEj3. In equation (30) we replace d(cosfy3) with a
function of dE133 and replace dp; and dps with functions of dE; and dE», respectively. From appendix D, it
is evident that

E
dpy = —ldEl (31a)
p1
E
dpy = —2dE, (31b)
P2
However, equation (F4) gives
d(cosby2) = E1232 dE123 (32)
pP1p2c¢
so that
. V2 8n?
dNips(E; p1, p2, p3) = Wc—Z/ EyE3E\23dE 1dEy dE)23 6(E — Eq33)
V2 gr?
= ———F|[FE dE| dE 3
(27h)6 2 / 1E3 dEy dEy (33)

This, of course, is not the usual form of the Dalitz phase space, which is written using dLips where the product
E\E;5 in equation (33) does not appear. (See the subsequent section on the Lorentz-invariant form of Dalitz

plots.)



Recurrence Relations

The density of N-body final states can often be simplified in terms of products of two-body densities.
Consider, for example, the reaction NN — NA — NN, where N represents a nucleon, 7 a pion, and A
an isobar. Normally we would simply write the three-body density dNips(E,pN,PN,Px), especially if the
square of the T-matrix | S TknGniTnil® cannot be simplified. However, if the full T-matrix simplifies to

n

S | Tin|?|Gnsl®Til?, then the full cross section for NN7 can be written as a product of cross sections for

n
forming NA and A — N7. Schematically this is

2
ONN—-NNx ~ ZTknGniTni (34)
n
However, if
ONNNNT 3 Tin | 21G i P Ti (35)
n
then
ONN-NN= =~ (ONNo>NA)(TA—NT) (36)

This equation shows intuitively that one might break the three-body factor dNips(E; pN, PN, Px) into a product
of dNips(E;pn,pa) and dNips(E;pn,pr). The result for three bodies is (ref. 2)

dNips(E; p1, p2, p3) = dNips(E; pc, p3) dNips(Ec; p1, p2) dEc (37)

and for four bodies is

dNips(E; p1, p2, p3,P4) = dNips(E; pc, pg) dNips(Ec; p1, p2) dNips(Eq; p3, pa) dEc dEy (38)

where dE,; and dE, represent integration over the “nonobserved” particles, These equations can easily be
generalized for N bodies.

Finally we note that even though the process NN — NA — NN=, where we have a well-defined
intermediate state, may be occurring, the T-matrix may not break up as in equation (35), and so the best
method would be not to use a recurrence relation, but rather the full three-body phase spaces developed earlier
in the text.

Lorentz-Invariant Phase Space

We shall now repeat all the results thus far obtained and write them in terms of Lorentz-invariant phase
space elements. (In this section we set h = ¢ = 1.) The Lorentz-invariant phase space elements are defined as
(refs. 2, 8, and 11)

N 3 N

. _ d°p;

dLips(E;p1,p2, - - - o) = (2m)* 3N (H —2;'>54 (p - Zm) (39)
=1 7 i=1

This definition is (27)* times the definition of reference 12. Note that the essential difference between dNips
(eq. (9)) and dLips is the appearance of d3p; in dNips as opposed to d®p;/E; in dLips. This, in fact, makes the
expressions for dLips somewhat simpler.

Two-Body Phase Space

The two-body density is

1 d3p; dpg 5
2m)? E, E;

dLips(E;p1,p2) = ; ( (E - E12)8(p - p12) (40)




with

P12 = P1 + P2 (41)
Equation (40) becomes
: 1 P
; = ———5 [ =—6(E — E13)dE{2dQ 42
dLips(E; p1, p2) 122 | B ( 12) dE12 dy (42)

analogous to equation (14a). In the nonrelativistic limit this is

dLips(E:py,p2Inn = gz () [y (43)

analogous to equation (20). The relativistic expression is obtained by substituting equation (E17) into
equation (42) and is much simpler than the dNips expression. We give it as

P, p2)ne = gz 87 = (my )] (B2 — (s — )] [ a (44)

Three-Body Phase Space
The three-body density is

: 1 d®py d®py d3p
ips(Eip1p2ip3) = goms | B h By (B — Eizs) €(p — pas) (45)

with
P123 = P1+ P2+ P3 (46)
Equation (45) becomes

: 1 P 1 3
. - _ [ £ - F d
dLips(E; p1, p2, p3) 8275 | By B+ (1% pajm cosbp)E, 6(E — Ey33) dE123 dYy d°py (47)

and evaluation of the kinematic factor proceeds by substituting equation (28) into equation (47) for the
nonrelativistic case. The relativistic case is considered in appendix G.

Dalitz Plots

The Dalitz plot form of the three-body density is treated in equations (29) through (33) for dNips. The
Lorentz-invariant form is evaluated in exactly the same manner. The result is particularly simple

dLips(E; py, p2, p3) = / dE, dE; (48)

which is the usual form (refs. 4, 8, and 12) for the Dalitz plot.

Recurrence Relations

The Lorentz-invariant recurrence relations are considered in references 2, 8, and 12. The result for three

bodies is .

dLips(E;p1,p2,p3) = %dLiPS(E; Pc, p3) dLips(Ec; p1, p2) dE, (49)
and for four bodies (ref. 2) is
) 1 ) ) )
dLips(E; p1, p2, p3, p4) = WdLIPS(E; Pe,pa) dLips(Ee; p1, p2) dLips(Ey; p3, pg) dE. dE, (50)

7



Concluding Remarks

Methods of constructing phase space factors for two- and three-body densities have been presented for use
in nuclear collision studies. Included in the discussion are methods for obtaining Lorentz-invariant ones. The
factoring of higher order phase space factors into products of lower order ones was also presented for use in
simplifying nuclear cross section calculations.

NASA Langley Research Center
Hampton, VA 23665-5225
September 1, 1988



Appendix A

Units

Consider the units of the quantities in equa-
tions (5) through (8). The units of T}, are seen from

Tps = <k|t|i>

- / VLW, aV (A1)
and using box normalization as in

v, = %eﬁ" (A2)

we see that the volume terms in equation (A1) cancel
so that the units of T}; are Energy. (Note that
instead of T};, we can have terms like TknGniTnf
where G is Green’s function with units (Energy)~
which cancel with the units of T,,;, so that Ty, G, Ths
has the same units as T};, namely Energy). Looking
at equation (9), we see that the units of dNips are
always (Energy) !, no matter how many bodies are
in the final state. Thus equation (8) can be written
schematically as

w o — (Energy)? (A3)

he Energy
which gives the correct units for w of (Time)~ 1.
Clearly then o, in equation (7), has units of
(Length)2.

In the above discussion, we have considered ¥ as
a one-body wave function with normalization 1 / VV.
However, in a reaction ¥; is typically a two-body
state (beam plus target) and ¥; an N-body state.
Consider a two-body final state. In'second quantized
form the (composite) two-body potential operator is
(ref. 13)

1 ..
T= 5 Z Z<z] |t|kl>ai+ajalak (A4)
i Kkl
i
k%1

where

<igltlki> = / / @} (r1)®7 (r2)t(r1, r2)®i(r1) @ (rp) dry dry
(A5)

so that obviously the units of <ij|t|kl> are still
Energy. The operators a and at have no units,
so that T has units of Energy. When we take
composite matrix elements as in nucleus-nucleus
collisions, for example, <P,T,|T|P,T,>, we
eventually obtain <P,T,|T|P,T,> in terms of
<kp(P)lp(T)|t|kp(P)lr(T)> (see eq. (36) of ref. 13)
so that the units of <P,T,|T|P,Ty,> are still obvi-
ously Energy. What happens when more than two
particles are present in the final state as in the re-
action NN — NA — NN (ref. 14)? The matrix
element is of the same form T}, G,,;T,;, which can
be written schematically as

[<N|(<N|<=|T|A>)|N>]

X [<N|<A|G|N>|N>][<N|<A|T|N>|N>] (A6)

From our consideration of <ij|t|kl>, which we found
to have Energy units, it is clear that G,; and T,,; still
have units of (Energy)~! and Energy, respectively.
The only concern is the extra 1/v/V units carried by
the newly created state <w|. These units, however,
are canceled by extra units carried in the pion-
nucleon interaction.

Let us summarize the ideas presented above. No
matter how many bodies are present, T}, always has
units of Energy. If Ty, is replaced by terms such
as TnGp;iTy;, it still has units of Energy, again no
matter for how many bodies. The units of dNips
are always Energy. Consequently w, as defined in
equation (8), always has units of (Time)~! and o
units of (Length)2.



Appendix B

Volume Normalization

This appendix represents a continuation of the
concerns raised in appendix A, where we established
that our methods resulted in a consistent system
of units. Here we are interested in the explicit
cancellation of the volume factors V appearing in the
expressions for o (eq. (7)), dNips (eq. (9)), and the
wave function ¥ (eq. (A1)). One might question why
one should worry about volume factors V' canceling
when the units have already been established as
correct. The answer lies in how one actually takes
limits in box normalization.

Consider the cross section expression from equa-
tions (7) and (8)

o= %gg / |Ty;|* dNips (B1)
where (ref. 3)
dNips yh-1 (For N > 2) (B2a)
dNips x V (For N =1) (B2b)
We write o schematically as
o = (V]i>?)(<kPvV1) (B3)

Now consider a one-body initial state and one-body
final state. Then

li>% o« 1/V (B4a)

<k|? x 1/V (B4b)
so that combining equations (B2b), (B4), and (B3),
we see that the volume terms cancel. Now for a two-
body state we do not write [i>? 1/V? because we
use a two-body center-of-mass wave function with
normalization 1/v/V, so that equations (B4a) and
(B4b) are still valid for the two-body center-of-mass
reduced wave function. From equation (B2a), it is
clear that the volume terms again cancel.

Let us be a little more specific for the two-body
case. Consider nucleus-nucleus scattering and write

li> = |®>|Po>|To> (B5)
where |¢> represents the total initial state; |®> rep-
resents the wave function for the motion of the overall

CM and is proportional to 1/\/\7; and |P,> and |To>

10

represent the internal states of the projectile and tar-
get, respectively, each with their own normalizations,
say 1/1/Vp and 1/y/V. Assume that the T-matrix
separates as

t =tgplptT (B6)

so that

<k|tl:> = <@ |te|®;><Prltp|Po><Tiltr|To>
(B7

Now for example

11 .,
<Pk’tp|Po> X TV_;T‘_/; ktPQO de (BS)

so that all the V;, volume terms cancel when the in-
tegrals are performed (so that taking the limit as Vp
approaches oo provides no difficulties). Let us con-
clude then that all matrix elements connected with
the internal states do not display V factors explic-
itly. However, for the CM states in <®|Te | P>,
the cross section o is defined in terms of the normal-
ization of |®;>, which is why the V factor appears
explicitly in equations (5) to (7). Clearly the 1/VV
factor of |®;> (when squared) always cancels the V
factor of equation (7) because of the way they were
defined originally. Similarly (in the two-body case),
the 1/v/V factor of |®> (when squared) cancels the
V factor from the two-body dNips because again the
dNips volume factor refers to the normalization of
I¢k>.

Now consider a two-body initial state with an
N-body final state. Clearly |®;> volume factors
cancel with the factor in equation (7) as before. The
N-body final state is written

lk> = |2-body CM>|N —2 created particles> (B9)

so that the final state has 2 + (N — 2), that is, N
particles, in the final state. However, |2-body CM>
carries only a 1//V factor (as in eq. (B4b)), whereas
the created particles each carry a 1/ V'V factor. (The
two-body CM is like a single reduced particle as
explained previously.) Thus,

> o —\/17 (—\/17)1\’_2 (B10)



so that

<k|? < (B11)

VN-1

which always cancels the VV=1 from dNips, as it
should because of the way dNips is constructed.

Finally we consider Ty, replaced by terms like
TknGniTp;. The <k| and |i> normalizations can-
cel dNips and F}, respectively, exactly as described
above. Any extra 1/v/V terms arising should be can-
celed by the integrals arising in the matrix elements

Appendix C
Derivation of Equations (14)

The total energy of particles 1 and 2 is

E=E|+E,

= V/(p1)? + (myc?)?

+1/(p2¢)? + (mae?)? (c1)

However p; and p, are not independent variables
because momentum is conserved. In the center-of-
mass frame of particles 1 and 2,

O0=p1+p2 (CMyy) (C2)

so that
Pi=p3 (CMy) (C3)

Thus,

Bz = /(p16)2 + (m1e)? 4 \/(p1o)? + (mae?)?
(C4)
so that Ej3 is a function of only pj, that is,
E12 = E12(p1) (C5)

Thus,

exactly as described for equation (B7). We summa-
rize as follows: the normalization of |{> (eq. (B4a))
must be written explicitly as 1/v/V in order to cancel
the normalization of F;. Similarly the normalization
in |k> (eq. (B11)) must be written explicitly to can-
cel VN1 i dNips. All other normalizations (such
as internal states or terms arising in Ty, G,,;T;,;) are
canceled as in the integrals (eq. (B8)). The appar-
ent inconsistency (i.e., |i> and <k| not canceling in
integrals) is due to our original definitions of F; and
dNips in terms of |i> and |k>.

dE13 _ 9E), _ 2 E + Ej

a E\E}

— CM Cé6
dpy Op1 (CM12)  (Co)

It is absolutely essential here to realize that we are
now using

Ey = \/(p10)? + (mac?)? (c7)

and not the form of E; in equation (C1). That
is, E5 in equation (C6) is only a shorthand for
equation (C7). We have emphasized this with the
prime on E), which is identical to E5 except that it
is to be written as in equation (Ccn).

Note also that equation (C6) is obtained from the
Jacobians in appendix I (egs. (I5) and (I6)) as

dp;
dpy = 2PL
p1 3E. dE;; (C8)

or

dpy = (L>—ldE12 (C9)

11



Appendix D

Some Technical Points

We raise some technical mathematical details now
and illustrate them with reference to the two-body
problem. They can be immediately generalized to
the full N-body integral in equation (9).

In equation (11) we had

2
/d3p1 d3p2 6(E — Er2) 8 (p - Z Pi)
1=1
= /d3p1 §(E - Ey9) (D1)

where the momentum-conserving delta function elim-
inated the integral over d3py. Note that momentum
conservation is thereby imposed on the right-hand
side (RHS) of equation (D1).

Energy and momentum are related via

E1 = /(p1c)? + (m1?)? (D2)
so that
p1dpy = E1dEy (D3)
Consequently

/d3p16(E—Eu)= /f p? dpy 6(E — E12) d
= f/plElé(E—Elg)dEl an, (D4)

The subject of the present appendix is the following
question: Why is it not correct to let 8(E — E12)
eliminate the dE; integral? Then we would obtain

/ / p1Ey 8(E — Exz) dEy dly ~ / p1Eydf; (D5)

After all, aren’t we just repeating the procedure used
in equation (D1)?

This question is very subtle, but absolutely vital
in obtaining correct results. The incorrect result in

12

equation (D5) is radically different from the correct
result in equations (14). The answer follows.

In the left-hand side (LHS) of equation (D1), all
the variables are totally independent. In the RHS
of equation (D1), they are not independent, but
are constrained by momentum conservation. If the
energy delta function

§(E — Exz) = 6(E — E1 - E2) (D6)

were such that Eqy and Eg are completely indepen-
dent variables, then the procedure in equation (D5)
would be correct. However, Eq and E, are not inde-
pendent; they are constrained by momentum conser-
vation in equation (D1). In fact in the center-of-mass
frame

§(E—E,—Eg) =6 (E —/(p10)2 + (m1c®)?

(o2 + (m2c2)2) (D7)

so that the combination

/5(E —/(pr)? + (m1c?)?

— o) + (m2c2)2> dE; #1 (D8)

Thus the correct procedure (with reference to eq. 9))
is always

1. Let the 63(p — vazl p;) freely kill a d3p;
integral.
2. Then make sure that 6(E — Ef;l E;) kills an

integral of the form d(z?’;l E;) and not dE;.

Forcing item 2 to occur always guarantees the
correct kinematic factors.



Appendix E

Two-Body Relativistic Kinematic Factor

We define the metric tensor

1 0 0 o0
o 0 -1 0 o (E1)
TR0 0 21 o
0 0 0 -1
which transforms contravariant 4-vectors A* to covariant vectors A, via
Ay = gAY (E2)
Now 40
Al
v _ _ 0
AY = 42 = (A", A) (E3)
A3
so that
1 0 0 o077r14° A9
s 0 -1 0 o0 |]Al —Al (E4)
PTlo 0 o1 oo | a2 T | g
0 0 0 -1J[43 ~A3
and so (ref. 8, p. 2)
Ay = (4% -A) (E5)
The scalar product of two 4-vectors is therefore (ref. 8, p. 2)
A-B=A4,B}= A.g"B,
=A°B9-A.B (E6)
Another way to obtain the above result is simply to use complex Minkowski space
A=(4%:A) (E7)
but this has the disadvantage of hiding the true nature of the space-time metric (ref. 15).
The energy-momentum 4-vector is
pu = (p°,—pc) = (E, —pc) (E8a)
or again we would use
p = (E,ipc) (E8b)
The magnitude of all 4-vectors are Lorentz-invariant quantities, so that
P’ =p-p=pup* = E? - (p|e)? = (me?)? (E9)

Now let us consider two-body kinematics. Aguilar-Benitez et al. (ref. 12, p. 58) consider two- and three-
body kinematics from the point of view of a single particle decaying into two or three bodies. They consider
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the kinematics in the rest frame of the decaying particle. However, in our case we have a reaction process
where two particles in the {nitial state react to form two or three particles in the final state. However, because
the overall center-of-mass (CM) frame is equivalent to the rest frame of the decaying particle, we can take over
the results of reference 12 with minor modifications.

Let us define the total final 4-momentum of the final-state particles 1 and 2 as

p12 = (E12, —P12¢) (E10a)
and the invariant mass is
(M12c2)? = pt, (E10b)
The overall CM frame is defined as
p12 =0=Pp1+ P2 (Ella)
that is,
p12 = (E12,0) = (M12¢?,0) (E11b)
Thus

ply=E} = (Mi2¢%)? = (p1 + p2)?

=ﬁ+ﬁ+%rm

= (m1c?)? + (mac?)? + 2(E1E2 — P1 -pzc’) (E12)
but in the CM frame
pP1 = —P2 (E13)
E; = Eyz — E (E14)
so that
£2, = (e + (mac)? +2 [Ea(Brz = E0) + Ipal?]
— (myc)? + (mac?)? + 2 [Ea(Brz — B1) + EY - (m1c?)?] (E15)
and thus

E2%, + (mlcz)2 — (mzcz)2
Ey = 12 El
1 2E12 (E16)

so that (after some algebra)

o1 [E%Z - (m1 + ma)2c?] [E%2 - (my - ma)2ct]
P1i¢c =
\AE?%,

which is analogous to the result of reference 12 (p. 58).

Equation (E17) thus allows for a solution to equations (14). Although the result is not as simple as the
nonrelativistic result of equation (20), it is still a simple matter to substitute equation (E17) into equation (14b)
to obtain our solution. A computer code would best handle this.

As a final point, we stress that we have not used conservation of momentum OT €nergy in the above analysis.

(E17)

14



Appendix F

Derivation of Equation (23)
The total energy of particles 1, 2, and 3 is

Eig3=E 1+ E3 + Es
= V(102 + (m162)2 4 \/(p2e)2 + (mac?)2 + \/(p3e)? + (mrge?)? (F1)

where, again, p;, ps, and p3 are not independent variables because of conservation of momentum. In the total
center-of-mass frame of particles 1, 2, and 3,

O=p;+p2+p3 (CMjg3) (F2)
so that
P = p} + P + 2p1py cos by (F3)

where ;3 is the relative angle between the momentum vectors of particles 1 and 2.
Thus

Bizs = \/(p1¢)? + (m1c2)2 + \/(p3e)? + (mgc?)?

+ \/(P10)2 + (p2¢)? + 2p1pac? cos By + (m3c?)? (F4)

so that F33 is a function of both p1 and pg, but not p3, that is,

E123 = E123(p1, p2) (F5)
Therefore,
dE123 _ 0E123 | OFE123 dpy
— + vz Fé
dpy dp1 dp1 dp; (F6)
but d
P2
f2_p F7
dps (F7)
because ps and p; are independent variables, and so
dE123 _ 0F123 _ p1c? | (p1 + ppcosfyz)c?
= By 2 E] (CM23) (F8)
where again it is essential to realize that
E; = \/(plc)2 + (p2¢)? + 2p1pac? cos Oy + (m3c2)? (F9)
Note again that
OFE123\ !
dp; = (%) dE123 (F10)
P1

using Jacobian notation of appendix I.
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Appendix G

Three-Body Relativistic Kinematic Factor

Our aim is to obtain the relativistic version of
p1(E123,p2) given in equation (28). That is, we
would like the three-body version of equations (E18)
and (E17). The result is then simply inserted into
equation (24).

Proceeding as in appendix E, the overall CM
frame is defined as

pi23 =0=p1+P2+P3 (Gla)

that is,

pi23 = (E123,0) = (Mj23¢?,0) (G1b)

which are analogous to equations (E1la) and (E11b).
Thus,

P?zs = E%zs = (1"!12302)2 =(p1+p2+ P3)2
=p? +p2 +p5+2p1-p2 +2(P1 +P2) P8
~ (m1c?)? + (mac?)? + (mae?)? + 2(E1 B2 — 1 P2c?)
+2[(B1 + E2)E3 — (P1+P2)" pac’) (G2)

analogous to equation (E12), but in the overall CM
frame

p3 = —(p1 +P2) (G3)

Appendix H
Ultrarelativistic Kinematics
Let us evaluate the two- and three-body phase

space factors in equations (14) and (24) using ultra-
relativistic kinematics. Normally we have

E? = (pe)? + (me?)” (H1)
but in the ultrarelativistic limit
me?<< pe (H2)

16

so that

2
E2y5 = (myc)? + (mac?)? + (mac?)?

+2(E1E2 ~ lp1/p2lc? cosbi2)
+2((Ey + E2)(E123 - Ey — E2)

+ (p1 +p2)2?] (G4)

= (m1c?)? + (mgc?)? + (mgc?)?

+2 (E1E2 - \/E'% - (mlc2)2|p2|c2 cosﬂlg)
+ 2[(131 + E3) (E123 - E1 — E2)

+E? - (myc®)? + EZ - (mgc?)?

E? - (m102)2|921608912] (G5)

analogous to equation (E15).

Thus, by solving equation (G5) for Ej as a func-
tion of E123 and |p2|, we have equations analogous
to equations (E16) and (E17). Clearly the solutions
are very complicated, and we shall not solve them
explicitly here.

so that
E =pc (H3)
is the ultrarelativistic expression relating energy and
momentum (i.e., it is the expression for the photon).
For the two-body final state, in the CM frame,
the analogue to equation (16) is

E12 = (p1¢c) + (p1¢) = 2p1c (H4)



so that
Eyy
p1 = p1(Ep2) = —21— (H5)
[+
Consequently
1
Ey =pic= §E12 (He)
1
Ey = 5E12 (H7)
so that

E\E, _ Ep

= < HS8
b1 E + Eé 8c ( )

Equations (H4) to (H8) are the analogues to equa-
tions (16) to (19). We substitute equation (H8) into
equation (14a) so that the ultrarelativistic expression
for dNips is

Appendix I

Jacobian Transformations

The change of variables from z and y to u and v
where

z = f(u,v) (11)
y = g(u,v) (12)

is accomplished through (ref. 16, p. 556)

/ / oz, y) dzdy = / / w(u,v),g(u,vngfz’ﬁ;dudv (13)

where the Jacobian is defined as

J a
Oz,y) _|5u & (14)
d(u, dy 3
el g g

This may be generalized to transform any set of

1
(27h)3 83

v £ / a0, (H9)

(27R)3 8c3

dNips(E;p1,p2)uR = /Efz 6(E - E13)dE 3 d0;

For the three-body final state, in the overall CM
frame, the analogue to equation (26) s

E123 = (p1) + (pac) + e\/p? + pZ + 2p1py cos b1
(H10)
which we solve for p; as

p1 = p1(E123,p2)
2
_ Efas
2p2c?(E123 + cos b3 — 1)

(H11)

analogous to equation (28) so that one would proceed

in the same manner as described  after
equation (28).
differentials via (ref. 9, p. 37)
P ..
dzydzy - dz, = Mdm dy -, dyn

B 8(y17y27 e ,yn)
(15)

with the Jacobian

Q
8
Q
L]

L]
3

QD Q
@8 <8

=5

8 <

—
D
NG

8(I13127 o '7:1:71)
B(ylvy27 °c ',yn)

[V
<
3

- - (A6)

Q)LQJ
<8
QLQ
QSE -
L~

%LQJ
<28

3
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4-vector

speed of light, 3 x 10% m/sec

noninvariant phase space element,
Mev~1

Lorentz-invariant phase space element
energy, MeV

defined in equations (12) and (22)
incident flux, m~2-sec !

metric tensor

Green’s function, MeV !

Planck’s constant, 6.58 x 10722 MeV-
sec

initial state vector

final state vector

mass, MeV /c?

total mass, MeV /c?

number of incident particles

number of bodies in reaction; also
nucleon

<

=k > e <

=

Pi

momentum vector, MeV /¢
position vector, m
T-matrix operator
T-matrix element

incident velocity, m-sec ™!
volume, m3

transition rate, sec ™!

Dirac delta function

isobar

angle, radians

reduced mass, MeV /¢?

pion

incident probability density, m 3
cross section, millibarns

one-body wave function, m~3/2

wave functions, m~3/2
solid angle, steradian

complex conjugate
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