53 research outputs found

    Use of Oxfendazole to Control Porcine Cysticercosis in a High-Endemic Area of Mozambique

    Get PDF
    A randomized controlled field trial to evaluate the effectiveness of a single oral dose of 30 mg/kg of oxfendazole (OFZ) treatment for control of porcine cysticercosis was conducted in 4 rural villages of Angónia district, north-western Mozambique. Two hundred and sixteen piglets aged 4 months were selected and assigned randomly to OFZ treatment or control groups. Fifty-four piglets were treated at 4 months of age (T1), while another 54 piglets were treated at 9 months of age (T2) and these were matched with 108 control pigs from the same litters and raised under the same conditions. Baseline data were collected on the prevalence of porcine cysticercosis using antigen ELISA (Ag-ELISA), as well as knowledge and practices related to Taenia solium transmission based on questionnaire interviews and observations. All animals were followed and re-tested for porcine cysticercosis by Ag-ELISA at 9 and 12 months of age when the study was terminated. Overall prevalence at baseline was 5.1% with no significant difference between groups. At the end of the study, 66.7% of the controls were found positive, whereas 21.4% of the T1 and 9.1% of the T2 pigs were positive, respectively. Incidence rates of porcine cysticercosis were lower in treated pigs as compared to controls. Necropsy of 30 randomly selected animals revealed that viable cysts were present in none (0/8) of T2 pigs, 12.5% (1/8) of T1 pigs and 42.8% (6/14) of control pigs. There was a significant reduction in the risk of T. solium cysticercosis if pigs were treated with OFZ either at 4 months (OR = 0.14; 95% CI: 0.05–0.36) or at 9 months of age (OR = 0.05; 95% CI: 0.02–0.16). Strategic treatment of pigs in endemic areas should be further explored as a means to control T. solium cysticercosis/taeniosis

    Biogeographical survey of soil microbiomes across sub-Saharan Africa:structure, drivers, and predicted climate-driven changes

    Get PDF
    BACKGROUND: Top-soil microbiomes make a vital contribution to the Earth’s ecology and harbor an extraordinarily high biodiversity. They are also key players in many ecosystem services, particularly in arid regions of the globe such as the African continent. While several recent studies have documented patterns in global soil microbial ecology, these are largely biased towards widely studied regions and rely on models to interpolate the microbial diversity of other regions where there is low data coverage. This is the case for sub-Saharan Africa, where the number of regional microbial studies is very low in comparison to other continents. RESULTS: The aim of this study was to conduct an extensive biogeographical survey of sub-Saharan Africa’s top-soil microbiomes, with a specific focus on investigating the environmental drivers of microbial ecology across the region. In this study, we sampled 810 sample sites across 9 sub-Saharan African countries and used taxonomic barcoding to profile the microbial ecology of these regions. Our results showed that the sub-Saharan nations included in the study harbor qualitatively distinguishable soil microbiomes. In addition, using soil chemistry and climatic data extracted from the same sites, we demonstrated that the top-soil microbiome is shaped by a broad range of environmental factors, most notably pH, precipitation, and temperature. Through the use of structural equation modeling, we also developed a model to predict how soil microbial biodiversity in sub-Saharan Africa might be affected by future climate change scenarios. This model predicted that the soil microbial biodiversity of countries such as Kenya will be negatively affected by increased temperatures and decreased precipitation, while the fungal biodiversity of Benin will benefit from the increase in annual precipitation. CONCLUSION: This study represents the most extensive biogeographical survey of sub-Saharan top-soil microbiomes to date. Importantly, this study has allowed us to identify countries in sub-Saharan Africa that might be particularly vulnerable to losses in soil microbial ecology and productivity due to climate change. Considering the reliance of many economies in the region on rain-fed agriculture, this study provides crucial information to support conservation efforts in the countries that will be most heavily impacted by climate change. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40168-022-01297-w

    Arable agriculture changes soil microbial communities in the South African Grassland Biome

    Get PDF
    7 pĂĄginas, 3 figuras, 1 tabla. -- This article is available at http://www.sajs.co.zaMany studies, mostly in temperate regions of the northern hemisphere, have demonstrated that agricultural practices affect the composition and diversity of soil microbial communities. However, very little is known about the impact of agriculture on the microbial communities in other regions of the world, most particularly on the African continent. In this study, we used MiSeq amplicon sequencing of bacterial 16S rRNA genes and fungal ITS regions to characterise microbial communities in agricultural and natural grassland soils located in the Mpumalanga Province of South Africa. Nine soil chemical parameters were also measured to evaluate the effects of edaphic factors on microbial community diversity. Bacterial and fungal communities were significantly richer and more diverse in natural grassland than in agricultural soils. Microbial taxonomic composition was also significantly different between the two habitat types. The phylum Acidobacteria was significantly more abundant in natural grassland than in agricultural soils, while Actinobacteria and the family Nectriaceae showed the opposite pattern. Soil pH and phosphorus significantly influenced bacterial communities, whereas phosphorus and calcium influenced fungal communities. These findings may be interpreted as a negative impact of land-use change on soil microbial diversity and composition.National Research Foundation (South Africa); University of PretoriaPeer reviewe

    Arable agriculture changes soil microbial communities in the South African Grassland Biome

    No full text
    Many studies, mostly in temperate regions of the northern hemisphere, have demonstrated that agricultural practices affect the composition and diversity of soil microbial communities. However, very little is known about the impact of agriculture on the microbial communities in other regions of the world, most particularly on the African continent. In this study, we used MiSeq amplicon sequencing of bacterial 16S rRNA genes and fungal ITS regions to characterise microbial communities in agricultural and natural grassland soils located in the Mpumalanga Province of South Africa. Nine soil chemical parameters were also measured to evaluate the effects of edaphic factors on microbial community diversity. Bacterial and fungal communities were significantly richer and more diverse in natural grassland than in agricultural soils. Microbial taxonomic composition was also significantly different between the two habitat types. The phylum Acidobacteria was significantly more abundant in natural grassland than in agricultural soils, while Actinobacteria and the family Nectriaceae showed the opposite pattern. Soil pH and phosphorus significantly influenced bacterial communities, whereas phosphorus and calcium influenced fungal communities. These findings may be interpreted as a negative impact of land-use change on soil microbial diversity and composition. SIGNIFICANCE: ‱ This report is the first of the effect of land-use changes on the diversity of the soil microbial communities in African grassland soils. ‱ Land-use changes influence the diversity and structure of soil microbial communities in the Grassland Biome of South Africa. ‱ This study serves as a baseline for future studies on South African soil microbial diversity.National Research Foundation (South Africa); University of Pretoriahttp://www.sajs.co.zaam2018Genetic

    Arable agriculture changes soil microbial communities in the South African Grassland Biome

    No full text
    Many studies, mostly in temperate regions of the northern hemisphere, have demonstrated that agricultural practices affect the composition and diversity of soil microbial communities. However, very little is known about the impact of agriculture on the microbial communities in other regions of the world, most particularly on the African continent. In this study, we used MiSeq amplicon sequencing of bacterial 16S rRNA genes and fungal ITS regions to characterise microbial communities in agricultural and natural grassland soils located in the Mpumalanga Province of South Africa. Nine soil chemical parameters were also measured to evaluate the effects of edaphic factors on microbial community diversity. Bacterial and fungal communities were significantly richer and more diverse in natural grassland than in agricultural soils. Microbial taxonomic composition was also significantly different between the two habitat types. The phylum Acidobacteria was significantly more abundant in natural grassland than in agricultural soils, while Actinobacteria and the family Nectriaceae showed the opposite pattern. Soil pH and phosphorus significantly influenced bacterial communities, whereas phosphorus and calcium influenced fungal communities. These findings may be interpreted as a negative impact of land-use change on soil microbial diversity and composition. Significance: This report is the first of the effect of land-use changes on the diversity of the soil microbial communities in African grassland soils. Land-use changes influence the diversity and structure of soil microbial communities in the Grassland Biome of South Africa. This study serves as a baseline for future studies on South African soil microbial diversit

    Soil nutritional status and biogeography influence rhizosphere microbial communities associated with the invasive tree Acacia dealbata

    No full text
    Invasiveness and the impacts of introduced plants are known to be mediated by plant-microbe interactions. Yet, the microbial communities associated with invasive plants are generally poorly understood. Here we report on the first comprehensive investigation of the bacterial and fungal communities inhabiting the rhizosphere and the surrounding bulk soil of a widespread invasive tree, Acacia dealbata. Amplicon sequencing data indicated that rhizospheric microbial communities differed significantly in structure and composition from those of the bulk soil. Two bacterial (Alphaproteobacteria and Gammaproteobacteria) and two fungal (Pezizomycetes and Agaricomycetes) classes were enriched in the rhizosphere compared with bulk soils. Changes in nutritional status, possibly induced by A. dealbata, primarily shaped rhizosphere soil communities. Despite a high degree of geographic variability in the diversity and composition of microbial communities, invasive A. dealbata populations shared a core of bacterial and fungal taxa, some of which are known to be involved in N and P cycling, while others are regarded as plant pathogens. Shotgun metagenomic analysis also showed that several functional genes related to plant growth promotion were overrepresented in the rhizospheres of A. dealbata. Overall, results suggest that rhizosphere microbes may contribute to the widespread success of this invader in novel environments

    The functional potential of the rhizospheric microbiome of an invasive tree species, Acacia dealbata

    Get PDF
    Plant-microbe interactions mediate both the invasiveness of introduced plant species and the impacts that they have in invaded ecosystems. Although the phylogenetic composition of the rhizospheric microbiome of Acacia dealbata (an invasive Australian tree species) has been investigated, little is known about the functional potential of the constituents of these altered microbial communities. We used shotgun DNA sequencing to better understand the link between bacterial community composition and functional capacity in the rhizospheric microbiomes associated with invasive A. dealbata populations in South Africa. Our analysis showed that several genes associated with plant growth-promoting (PGP) traits were significantly overrepresented in the rhizospheric metagenomes compared to neighbouring bulk soils collected away from A. dealbata stands. The majority of these genes are involved in the metabolism of nitrogen, carbohydrates and vitamins, and in various membrane transport systems. Overrepresented genes were linked to a limited number of bacterial taxa, mostly Bradyrhizobium species, the preferred N-fixing rhizobial symbiont of Australian acacias. Overall, these findings suggest that A. dealbata enriches rhizosphere soils with potentially beneficial microbial taxa, and that members of the genus Bradyrhizobium may play an integral role in mediating PGP processes that may influence the success of this invader when colonizing novel environments
    • 

    corecore