1,007 research outputs found

    One-by-one trap activation in silicon nanowire transistors

    Full text link
    Flicker or 1/f noise in metal-oxide-semiconductor field-effect transistors (MOSFETs) has been identified as the main source of noise at low frequency. It often originates from an ensemble of a huge number of charges trapping and detrapping. However, a deviation from the well-known model of 1/f noise is observed for nanoscale MOSFETs and a new model is required. Here, we report the observation of one-by-one trap activation controlled by the gate voltage in a nanowire MOSFET and we propose a new low-frequency-noise theory for nanoscale FETs. We demonstrate that the Coulomb repulsion between electronically charged trap sites avoids the activation of several traps simultaneously. This effect induces a noise reduction by more than one order of magnitude. It decreases when increasing the electron density in the channel due to the electrical screening of traps. These findings are technologically useful for any FETs with a short and narrow channel.Comment: One file with paper and supplementary informatio

    Towards universal influenza vaccines?

    Get PDF
    Vaccination is the most cost-effective way to reduce the considerable disease burden of seasonal influenza. Although seasonal influenza vaccines are effective, their performance in the elderly and immunocompromised individuals would benefit from improvement. Major problems related to the development and production of pandemic influenza vaccines are response time and production capacity as well as vaccine efficacy and safety. Several improvements can be envisaged. Vaccine production technologies based on embryonated chicken eggs may be replaced by cell culture techniques. Reverse genetics techniques can speed up the generation of seed viruses and new mathematical modelling methods improve vaccine strain selection. Better understanding of the correlates of immune-mediated protection may lead to new vaccine targets besides the viral haemagglutinin, like the neuraminidase and M2 proteins. In addition, the role of cell-mediated immunity could be better exploited. New adjuvants have recently been shown to increase the breadth and the duration of influenza vaccine-induced protection. Other studies have shown that influenza vaccines based on different viral vector systems may also induce broad protection. It is to be expected that these developments may lead to more universal influenza vaccines that elicit broader and longer protection, and can be produced more efficiently

    Phonon Universal Transmission Fluctuations and Localization in Semiconductor Superlattices with a Controlled Degree of Order

    Get PDF
    We study both analytically and numerically phonon transmission fluctuations and localization in partially ordered superlattices with correlations among neighboring layers. In order to generate a sequence of layers with a varying degree of order we employ a model proposed by Hendricks and Teller as well as partially ordered versions of deterministic aperiodic superlattices. By changing a parameter measuring the correlation among adjacent layers, the Hendricks- Teller superlattice exhibits a transition from periodic ordering, with alterna- ting layers, to the phase separated opposite limit; including many intermediate arrangements and the completely random case. In the partially ordered versions of deterministic superlattices, there is short-range order (among any NN conse- cutive layers) and long range disorder, as in the N-state Markov chains. The average and fluctuations in the transmission, the backscattering rate, and the localization length in these multilayered systems are calculated based on the superlattice structure factors we derive analytically. The standard deviation of the transmission versus the average transmission lies on a {\it universal\/} curve irrespective of the specific type of disorder of the SL. We illustrate these general results by applying them to several GaAs-AlAs superlattices for the proposed experimental observation of phonon universal transmission fluctuations.Comment: 16-pages, Revte

    Impact of van der Waals forces on the classical shuttle instability

    Full text link
    The effects of including the van der Waals interaction in the modelling of the single electron shuttle have been investigated numerically. It is demonstrated that the relative strength of the vdW-forces and the elastic restoring forces determine the characteristics of the shuttle instability. In the case of weak elastic forces and low voltages the grain is trapped close to one lead, and this trapping can be overcome by Coulomb forces by applying a bias voltage VV larger than a threshold voltage VuV_{\rm u}. This allows for grain motion leading to an increase in current by several orders of magnitude above the transition voltage VuV_{\rm u}. Associated with the process is also hysteresis in the I-V characteristics.Comment: minor revisions, updated references, Article published in Phys. Rev. B 69, 035309 (2004

    Anomalous thermal conductivity and local temperature distribution on harmonic Fibonacci chains

    Full text link
    The harmonic Fibonacci chain, which is one of a quasiperiodic chain constructed with a recursion relation, has a singular continuous frequency-spectrum and critical eigenstates. The validity of the Fourier law is examined for the harmonic Fibonacci chain with stochastic heat baths at both ends by investigating the system size N dependence of the heat current J and the local temperature distribution. It is shown that J asymptotically behaves as (ln N)^{-1} and the local temperature strongly oscillates along the chain. These results indicate that the Fourier law does not hold on the harmonic Fibonacci chain. Furthermore the local temperature exhibits two different distribution according to the generation of the Fibonacci chain, i.e., the local temperature distribution does not have a definite form in the thermodynamic limit. The relations between N-dependence of J and the frequency-spectrum, and between the local temperature and critical eigenstates are discussed.Comment: 10 pages, 4 figures, submitted to J. Phys.: Cond. Ma

    Quantum Phonon Optics: Coherent and Squeezed Atomic Displacements

    Full text link
    In this paper we investigate coherent and squeezed quantum states of phonons. The latter allow the possibility of modulating the quantum fluctuations of atomic displacements below the zero-point quantum noise level of coherent states. The expectation values and quantum fluctuations of both the atomic displacement and the lattice amplitude operators are calculated in these states---in some cases analytically. We also study the possibility of squeezing quantum noise in the atomic displacement using a polariton-based approach.Comment: 6 pages, RevTe

    Phonon Transmission Rate, Fluctuations, and Localization in Random Semiconductor Superlattices: Green's Function Approach

    Get PDF
    We analytically study phonon transmission and localization in random superlattices by using a Green's function approach. We derive expressions for the average transmission rate and localization length, or Lyapunov exponent, in terms of the superlattice structure factor. This is done by considering the backscattering of phonons, due to the complex mass density fluctuations, which incorporates all of the forward scattering processes. These analytical results are applied to two types of random superlattices and compared with numerical simulations based on the transfer matrix method. Our analytical results show excellent agreement with the numerical data. A universal relation for the transmission fluctuations versus the average transmission is derived explicitly, and independently confirmed by numerical simulations. The transient of the distribution of transmission to the log-normal distribution for the localized phonons is also studied.Comment: 36 pages, Late

    A Silicon Nanowire Ion-Sensitive Field-Effect-Transistor with elementary charge sensitivity

    Full text link
    We investigate the mechanisms responsible for the low-frequency noise in liquid-gated nano-scale silicon nanowire field-effect transistors (SiNW-FETs) and show that the charge-noise level is lower than elementary charge. Our measurements also show that ionic strength of the surrounding electrolyte has a minimal effect on the overall noise. Dielectric polarization noise seems to be at the origin of the 1/f noise in our devices. The estimated spectral density of charge noise Sq = 1.6x10-2 e/sqr(Hz) at 10 Hz opens the door to metrological studies with these SiNW-FETs for the electrical detection of a small number of molecules.Comment: One file including paper (with 3 figures) and supplementary information (with 5 figures). Submitte
    corecore