313 research outputs found

    Noether symmetry approach to scalar-field-dominated cosmology with dynamically evolving G and Lambda

    Full text link
    This paper studies the cosmological equations for a scalar field Phi in the framework of a quantum gravity modified Einstein--Hilbert Lagrangian where G and Lambda are dynamical variables. It is possible to show that there exists a Noether symmetry for the point Lagrangian describing this scheme in a FRW universe. Our main result is that the Noether Symmetry Approach fixes both Lambda = Lambda(G) and the potential V = V(Phi) of the scalar field. The method does not lead, however, to easily solvable equations, by virtue of the higher dimensionality of the reduced configuration space involved, the additional variable being the running Newton coupling.Comment: 10 pages, Revtex

    Noncompact sigma-models: Large N expansion and thermodynamic limit

    Full text link
    Noncompact SO(1,N) sigma-models are studied in terms of their large N expansion in a lattice formulation in dimensions d \geq 2. Explicit results for the spin and current two-point functions as well as for the Binder cumulant are presented to next to leading order on a finite lattice. The dynamically generated gap is negative and serves as a coupling-dependent infrared regulator which vanishes in the limit of infinite lattice size. The cancellation of infrared divergences in invariant correlation functions in this limit is nontrivial and is in d=2 demonstrated by explicit computation for the above quantities. For the Binder cumulant the thermodynamic limit is finite and is given by 2/(N+1) in the order considered. Monte Carlo simulations suggest that the remainder is small or zero. The potential implications for ``criticality'' and ``triviality'' of the theories in the SO(1,N) invariant sector are discussed.Comment: 46 pages, 2 figure

    A Scaling Hypothesis for the Spectral Densities in the O(3) Nonlinear Sigma-Model

    Get PDF
    A scaling hypothesis for the n-particle spectral densities of the O(3) nonlinear sigma-model is described. It states that for large particle numbers the n-particle spectral densities are ``self-similar'' in being basically rescaled copies of a universal shape function. This can be viewed as a 2-dimensional, but non-perturbative analogue of the KNO scaling in QCD. Promoted to a working hypothesis, it allows one to compute the two point functions at ``all'' energy or length scales. In addition, the values of two non-perturbative constants (needed for a parameter-free matching of the perturbative and the non-perturbative regime) are determined exactly.Comment: 9 Pages, Latex, 3 Postscript Figure

    Spherically symmetric ADM gravity with variable G and Lambda(c)

    Full text link
    This paper investigates the Arnowitt--Deser--Misner (hereafter ADM) form of spherically symmetric gravity with variable Newton parameter G and cosmological term Lambda(c). The Newton parameter is here treated as a dynamical variable, rather than being merely an external parameter as in previous work on closely related topics. The resulting Hamilton equations are obtained; interestingly, a static solution exists, that reduces to Schwarzschild geometry in the limit of constant G, describing a Newton parameter ruled by a nonlinear differential equation in the radial variable r. A remarkable limiting case is the one for which the Newton parameter obeys an almost linear growth law at large r. An exact solution for G as a function of r is also obtained in the case of vanishing cosmological constant. Some observational implications of these solutions are obtained and briefly discussed.Comment: 16 pages, 2 figures. The presentation has been improved in all section

    Quasinormal modes for asymptotic safe black holes

    Full text link
    Under the hypothesis of asymptotic safety of gravity, the static, spherically symmetric black hole solutions in the infrared limit are corrected by non-perturbative effects. Specifically, the metric is modified by the running of gravitational couplings. In this work, we investigate the effects of this correction to the quasinormal modes (QNMs) of a test scalar field propagating in this kind of black hole background analytically and numerically. It is found that although the quasi-period frequencies and the damping of oscillations are respectively enhanced and weakened by the quantum correction term, the stability of the black hole remains.Comment: 11 pages, 1 figures, accepted for publication in CQG. arXiv admin note: text overlap with arXiv:1007.131

    Quark contact interactions at the LHC

    Full text link
    Quark contact interactions are an important signal of new physics. We introduce a model in which the presence of a symmetry protects these new interactions from giving large corrections in flavor changing processes at low energies. This minimal model provides the basic set of operators which must be considered to contribute to the high-energy processes. To discuss their experimental signature in jet pairs produced in proton-proton colllisions, we simplify the number of possible operators down to two. We show (for a representative integrated luminosity of 200 pb^-1 at \surd s = 7 TeV) how the presence of two operators significantly modifies the bound on the characteristic energy scale of the contact interactions which is obtained by keeping a single operator.Comment: 8 pages, 2 figure

    Renormalization Flow of Axion Electrodynamics

    Full text link
    We study the renormalization flow of axion electrodynamics, concentrating on the non-perturbative running of the axion-photon coupling and the mass of the axion (like) particle. Due to a non-renormalization property of the axion-photon vertex, the renormalization flow is controlled by photon and axion anomalous dimensions. As a consequence, momentum-independent axion self-interactions are not induced by photon fluctuations. The non-perturbative flow towards the ultraviolet exhibits a Landau-pole-type behavior, implying that the system has a scale of maximum UV extension and that the renormalized axion-photon coupling in the deep infrared is bounded from above. Even though gauge invariance guarantees that photon fluctuations do not decouple in the infrared, the renormalized couplings remain finite even in the deep infrared and even for massless axions. Within our truncation, we also observe the existence of an exceptional RG trajectory, which is extendable to arbitrarily high scales, without being governed by a UV fixed point.Comment: 12 pages, 4 figure

    The Intrinsic Coupling in Integrable Quantum Field Theories

    Get PDF
    The intrinsic 4-point coupling, defined in terms of a truncated 4-point function at zero momentum, provides a well-established measure for the interaction strength of a QFT. We show that this coupling can be computed non-perturbatively and to high accuracy from the form factors of an (integrable) QFT. The technique is illustrated and tested with the Ising model, the XY-model and the O(3) nonlinear sigma-model. The results are compared to those from high precision lattice simulations.Comment: 69 pages, Late

    An effective action for asymptotically safe gravity

    Full text link
    Asymptotically safe theories of gravitation have received great attention in recent times. In this framework an effective action embodying the basic features of the renormalized flow around the non-gaussian fixed point is derived and its implications for the early universe are discussed. In particular, a "landscape" of a countably infinite number of cosmological inflationary solutions characterized by an unstable de Sitter phase lasting for a large enough number of e-folds is found.Comment: 5 pages, to appear as a Rapid Communication in Physical Review

    Vacuum orbit and spontaneous symmetry breaking in hyperbolic sigma models

    Full text link
    We present a detailed study of quantized noncompact, nonlinear SO(1,N) sigma-models in arbitrary space-time dimensions D \geq 2, with the focus on issues of spontaneous symmetry breaking of boost and rotation elements of the symmetry group. The models are defined on a lattice both in terms of a transfer matrix and by an appropriately gauge-fixed Euclidean functional integral. The main results in all dimensions \geq 2 are: (i) On a finite lattice the systems have infinitely many nonnormalizable ground states transforming irreducibly under a nontrivial representation of SO(1,N); (ii) the SO(1,N) symmetry is spontaneously broken. For D =2 this shows that the systems evade the Mermin-Wagner theorem. In this case in addition: (iii) Ward identities for the Noether currents are derived to verify numerically the absence of explicit symmetry breaking; (iv) numerical results are presented for the two-point functions of the spin field and the Noether current as well as a new order parameter; (v) in a large N saddle-point analysis the dynamically generated squared mass is found to be negative and of order 1/(V \ln V) in the volume, the 0-component of the spin field diverges as \sqrt{\ln V}, while SO(1,N) invariant quantities remain finite.Comment: 60 pages, 12 Figures, AMS-Latex; v2: results on vacuum orbit and spontaneous symmetry breaking extended to all dimension
    • …
    corecore