5 research outputs found
An overview of the recent developments on fructooligosaccharide production and applications
Over the past years, many researchers have suggested
that deficiencies in the diet can lead to disease states
and that some diseases can be avoided through an adequate
intake of relevant dietary components. Recently, a great interest
in dietary modulation of the human gut has been registered.
Prebiotics, such as fructooligosaccharides (FOS), play a key
role in the improvement of gut microbiota balance and in
individual health. FOS are generally used as components of
functional foods, are generally regarded as safe (generally
recognized as safe status—from the Food and Drug Administration,
USA), and worth about 150€ per kilogram. Due to
their nutrition- and health-relevant properties, such as moderate
sweetness, low carcinogenicity, low calorimetric value,
and low glycemic index, FOS have been increasingly used
by the food industry. Conventionally, FOS are produced
through a two-stage process that requires an enzyme production
and purification step in order to proceed with the chemical
reaction itself. Several studies have been conducted on the
production of FOS, aiming its optimization toward the development
of more efficient production processes and their potential
as food ingredients. The improvement of FOS yield and
productivity can be achieved by the use of different fermentative
methods and different microbial sources of FOS producing
enzymes and the optimization of nutritional and
culture parameter; therefore, this review focuses on the latest
progresses in FOS research such as its production, functional
properties, and market data.Agencia de Inovacao (AdI)-Project BIOLIFE reference PRIME 03/347. Ana Dominguez acknowledges Fundacao para a Ciencia e a Tecnologia, Portugal, for her PhD grant reference SFRH/BD/23083/2005
Climate change and health within the South African context: A thematic content analysis study of climate change and health expert interviews
International audienceBackground: Climate change presents an unprecedented and urgent threat to human health and survival. South Africa’s health response will require a strong and effective intersectoral organisational effort.Aim: Exploratory interview outcomes are used to advance practice and policy recommendations, as well as for broad input in the development of a draft national framework for a health risk and vulnerability assessment (RVA) for national departments.Setting: Nationally in South Africa.Method: Twenty key expert interviews were conducted with South African experts in the field of climate change and health. Interview data was analysed by means of thematic content analysis.Results: Findings suggest that previously poor communities are most at risk to the impacts of climate change on health, as well as those with underlying medical conditions. Climate change may also serve as a catalyst for improving the healthcare system overall and should serve as the conduit to do so. A draft climate change and health RVA should take into account existing frameworks and should be implemented by local government. It is also critical that the health and health system impacts from climate change are well understood, especially in light of the plans to implement the (South African) National Health Insurance (NHI) scheme.Conclusion: Practice and policy initiatives should be holistic in nature. Consideration should be given to forming a South African National Department of Climate Change, or a similar coordinating body between the various national departments in South Africa, as health intercepts with all other domains within the climate change field
Thermal stability of the immobilized fructosyltransferase from Rhodotorula sp
The thermal stability of the extracellular fructosyltransferase (FTase) from Rhodotorula sp., recovered from cultivation medium by ethanol precipitation and immobilized onto niobium ore, was studied by Arrhenius plot, half - life profile, half - inactivation temperature (T50) and thermodynamic parameters. The Arrhenius plot showed two different behaviors with different deactivation energies (Ead) only after immobilization, the transition occurring in the temperature interval between 51 and 52ºC. T50 for the free enzyme was estimated to be around 62ºC and, after immobilization, 66ºC. After 15 minutes at 52ºC, it was also possible to observe enzymatic activation for both the free and immobilized forms, but greater activation was achieved at pH 4.5 with the immobilized enzyme. Between 47 - 51ºC the immobilized enzyme was more stable than the free enzyme, with pH 6.0 being the more stable condition for the immobilized enzyme. However, above 52ºC the free form was more stable
