31 research outputs found

    Transcriptional Control of Steroid Biosynthesis Genes in the Drosophila Prothoracic Gland by Ventral Veins Lacking and Knirps.

    Get PDF
    Specialized endocrine cells produce and release steroid hormones that govern development, metabolism and reproduction. In order to synthesize steroids, all the genes in the biosynthetic pathway must be coordinately turned on in steroidogenic cells. In Drosophila, the steroid producing endocrine cells are located in the prothoracic gland (PG) that releases the steroid hormone ecdysone. The transcriptional regulatory network that specifies the unique PG specific expression pattern of the ecdysone biosynthetic genes remains unknown. Here, we show that two transcription factors, the POU-domain Ventral veins lacking (Vvl) and the nuclear receptor Knirps (Kni), have essential roles in the PG during larval development. Vvl is highly expressed in the PG during embryogenesis and is enriched in the gland during larval development, suggesting that Vvl might function as a master transcriptional regulator in this tissue. Vvl and Kni bind to PG specific cis-regulatory elements that are required for expression of the ecdysone biosynthetic genes. Knock down of either vvl or kni in the PG results in a larval developmental arrest due to failure in ecdysone production. Furthermore, Vvl and Kni are also required for maintenance of TOR/S6K and prothoracicotropic hormone (PTTH) signaling in the PG, two major pathways that control ecdysone biosynthesis and PG cell growth. We also show that the transcriptional regulator, Molting defective (Mld), controls early biosynthetic pathway steps. Our data show that Vvl and Kni directly regulate ecdysone biosynthesis by transcriptional control of biosynthetic gene expression and indirectly by affecting PTTH and TOR/S6K signaling. This provides new insight into the regulatory network of transcription factors involved in the coordinated regulation of steroidogenic cell specific transcription, and identifies a new function of Vvl and Knirps in endocrine cells during post-embryonic development

    Canalization of Gene Expression and Domain Shifts in the Drosophila Blastoderm by Dynamical Attractors

    Get PDF
    The variation in the expression patterns of the gap genes in the blastoderm of the fruit fly Drosophila melanogaster reduces over time as a result of cross regulation between these genes, a fact that we have demonstrated in an accompanying article in PLoS Biology (see Manu et al., doi:10.1371/journal.pbio.1000049). This biologically essential process is an example of the phenomenon known as canalization. It has been suggested that the developmental trajectory of a wild-type organism is inherently stable, and that canalization is a manifestation of this property. Although the role of gap genes in the canalization process was established by correctly predicting the response of the system to particular perturbations, the stability of the developmental trajectory remains to be investigated. For many years, it has been speculated that stability against perturbations during development can be described by dynamical systems having attracting sets that drive reductions of volume in phase space. In this paper, we show that both the reduction in variability of gap gene expression as well as shifts in the position of posterior gap gene domains are the result of the actions of attractors in the gap gene dynamical system. Two biologically distinct dynamical regions exist in the early embryo, separated by a bifurcation at 53% egg length. In the anterior region, reduction in variation occurs because of stability induced by point attractors, while in the posterior, the stability of the developmental trajectory arises from a one-dimensional attracting manifold. This manifold also controls a previously characterized anterior shift of posterior region gap domains. Our analysis shows that the complex phenomena of canalization and pattern formation in the Drosophila blastoderm can be understood in terms of the qualitative features of the dynamical system. The result confirms the idea that attractors are important for developmental stability and shows a richer variety of dynamical attractors in developmental systems than has been previously recognized

    Abdominal segmentation of the Drosophila embryo requires a hormone receptor-like protein encoded by the gap gene knirps

    No full text
    The body pattern along the anterior-posterior axis of the insect embryo is thought to be established by two organizing centres localized at the ends of the egg. Genetic analysis of the polarity-organizing centres in Drosophila has identified three distinct classes of maternal effect genes that organize the anterior, posterior and terminal pattern elements of the embryo. The factors provided by these gene classes specify the patterns of expression of the segmentation genes at defined positions along the longitudinal axis of the embryo. The system responsible for organizing the posterior segment pattern is a group of at least seven maternal genes and the zygotic gap gene knirps (kni). Their mutant phenotype has adjacent segments in the abdominal region of the embryo deleted. Genetic analysis and cytoplasmic transplantation experiments suggested that these maternal genes are required to generate a 'posterior activity' that is thought to activate the expression of kni (reviewed in ref. 2). The molecular nature of the members of the posterior group is still unknown. Here we report the molecular characterization of the kni gene that codes for a member of the steroid/thyroid receptor superfamily of proteins which in vertebrates act as ligand-dependent DNA-binding transcription regulators

    MOEMS laser projector for handheld devices featuring motion compensation

    No full text
    Laser projection has been realized using a 2d micromechanical scanner mirror. For handheld devices it is advantageous to compensate motion. This can be realized using inertial sensors for motion detection and the implementation of a compensation algorithms. The projector must provide sufficient dynamic range for the compensation. A demo system was realized and tested succesfully

    Functional and conserved domains of the Drosophila transcription factor encoded by the segmentation gene knirps.

    No full text
    The Drosophila gap gene knirps (kni) is required for abdominal segmentation. It encodes a steroid/thyroid orphan receptor-type transcription factor which is distributed in a broad band of nuclei in the posterior region of the blastoderm. To identify essential domains of the kni protein (KNI), we cloned and sequenced the DNA encompassing the coding region of nine kni mutant alleles of different strength and kni-homologous genes of related insect species. We also examined in vitro-modified versions of KNI in various assay systems both in vitro and in tissue culture. The results show that KNI contains several functional domains which are arranged in a modular fashion. The N-terminal 185-amino-acid region which includes the DNA-binding domain and a functional nuclear location signal fails to provide kni activity to the embryo. However, a truncated KNI protein that contains additional 47 amino acids exerts rather strong kni activity which is functionally defined by a weak kni mutant phenotype of the embryo. The additional 47-amino-acid stretch includes a transcriptional repressor domain which acts in the context of a heterologous DNA-binding domain of the yeast transcriptional activator GAL4. The different domains of KNI as defined by functional studies are conserved during insect evolution

    Novel 3D-scanner based on electrostatically driven resonant micromirrors

    No full text
    This contribution presents a new scanning principle and device for 3-dimensional digital capturing and measurement of objects based on the triangulation method. The key elements are MOEMS, in particular electrostatically excited, harmonically oscillating micromechanical mirrors, which are useful means for light projection as well as for light detection. A configuration for capturing the trace of a static illumination is described, which applies a micro scanning mirror that oscillates in two axes. A synchronization method is proposed in order to apply micro scanning mirrors for both patterned illumination and light detection. For proving both techniques a test setup has been designed and assembled, and first results based on a static illumination are outlined
    corecore