129 research outputs found

    Mobility of high-power solitons in saturable nonlinear photonic lattices

    Full text link
    We theoretically study the properties of one-dimensional nonlinear saturable photonic lattices exhibiting multiple mobility windows for stationary solutions. The effective energy barrier decreases to a minimum in those power regions where a new intermediate stationary solution appears. As an application, we investigate the dynamics of high-power gaussian-like beams finding several regions where the light transport is enhanced.Comment: 3 pages, 3 figures, to be published in Optics Letter

    Compactification tuning for nonlinear localized modes in sawtooth lattices

    Get PDF
    We discuss the properties of nonlinear localized modes in sawtooth lattices, in the framework of a discrete nonlinear Schrödinger model with general on-site nonlinearity. Analytic conditions for existence of exact compact three-site solutions are obtained, and explicitly illustrated for the cases of power-law (cubic) and saturable nonlinearities. These nonlinear compact modes appear as continuations of linear compact modes belonging to a flat dispersion band. While for the linear system a compact mode exists only for one specific ratio of the two different coupling constants, nonlinearity may lead to compactification of otherwise noncompact localized modes for a range of coupling ratios, at some specific power. For saturable lattices, the compactification power can be tuned by also varying the nonlinear parameter. Introducing different on-site energies and anisotropic couplings yields further possibilities for compactness tuning. The properties of strongly localized modes are investigated numerically for cubic and saturable nonlinearities, and in particular their stability over large parameter regimes is shown. Since the linear flat band is isolated, its compact modes may be continued into compact nonlinear modes both for focusing and defocusing nonlinearities. Results are discussed in relation to recent realizations of sawtooth photonic lattices.The research has been performed with support from the Swedish Research Council within the Swedish Research Links program, 348-2013-6752. U.N. appreciates the Spanish government projects FIS 2011-25167 and FPDI-2013-18422 as well as the Aragon project (Grupo FENOL). R.A.V. acknowledges support from Programa ICM grant RC130001, Programa de Financiamiento Basal de CONICYT (FB0824/2008), and FONDECYT Grant No. 1151444.Peer Reviewe

    The Bose–Hubbard model with squeezed dissipation

    Get PDF
    The stationary properties of the Bose–Hubbard model under squeezed dissipation are investigated. The dissipative model does not possess aU (1) symmetry but conserves parity. We find that 〈a j 〉 = 0 always holds, so no symmetry breaking occurs. Without the onsite repulsion, the linear case is known to be critical. At the critical point the system freezes to an EPR state with infinite two mode entanglement. We show here that the correlations are rapidly destroyed whenever the repulsion is switched on. As we increase the latter, the system approaches a thermal state with an effective temperature defined in terms of the squeezing parameter in the dissipators. We characterize this transition by means of a Gutzwiller ansatz and the Gaussian Hartree–Fock–Bogoliubov approximation

    Anderson localization in a periodic photonic lattice with a disordered boundary

    Full text link
    We investigate experimentally the light evolution inside a two-dimensional finite periodic array of weakly- coupled optical waveguides with a disordered boundary. For a completely localized initial condition away from the surface, we find that the disordered boundary induces an asymptotic localization in the bulk, centered around the initial position of the input beam.Comment: 3 pages, 4 figure

    Virtopsy: Zukunftsträchtige Forschung in der Rechtsmedizin

    Get PDF
    Computed tomography techniques have been developed over the last 10 years and have found various applications in the forensic field. The most recent development is multislice computed tomography combined with photogrammetry-based surface optical scanning and image rendering techniques. This combination of techniques can be used to produce 3-dimensional images of injury patterns for comparison with suspect weapons and also to screen for pathological conditions in the living or deceased. This technology provides a minimally invasive procedure for capturing forensically relevant images which can be produced in the courtroom. The rapid developments in imaging techniques could provide an alternative to conventional autopsy procedures in the futur

    Fano resonances in saturable waveguide arrays

    Full text link
    We study a waveguide array with an embedded nonlinear saturable impurity. We solve the impurity problem in closed form and find the nonlinear localized modes. Next, we consider the scattering of a small-amplitude plane wave by a nonlinear impurity mode, and discover regions in parameter space where transmission is fully suppressed. We relate these findings with Fano resonances and propose this setup as a mean to control the transport of light across the array.Comment: 3 pages, 4 figures, submitted to Optics Letter
    corecore