6,693 research outputs found
PDG4: THE DIFFERENTIAL EFFECT OF SULPHONYLUREA OR BIGUANIDE DRUGS ON CARDIAC REVASCULARIZATION PROCEDURES IN DIABETICS
Oseledets' Splitting of Standard-like Maps
For the class of differentiable maps of the plane and, in particular, for
standard-like maps (McMillan form), a simple relation is shown between the
directions of the local invariant manifolds of a generic point and its
contribution to the finite-time Lyapunov exponents (FTLE) of the associated
orbit. By computing also the point-wise curvature of the manifolds, we produce
a comparative study between local Lyapunov exponent, manifold's curvature and
splitting angle between stable/unstable manifolds. Interestingly, the analysis
of the Chirikov-Taylor standard map suggests that the positive contributions to
the FTLE average mostly come from points of the orbit where the structure of
the manifolds is locally hyperbolic: where the manifolds are flat and
transversal, the one-step exponent is predominantly positive and large; this
behaviour is intended in a purely statistical sense, since it exhibits large
deviations. Such phenomenon can be understood by analytic arguments which, as a
by-product, also suggest an explicit way to point-wise approximate the
splitting.Comment: 17 pages, 11 figure
Magpie: towards a semantic web browser
Web browsing involves two tasks: finding the right web page and then making sense of its content. So far, research has focused on supporting the task of finding web resources through ‘standard’ information retrieval mechanisms, or semantics-enhanced search. Much less attention has been paid to the second problem. In this paper we describe Magpie, a tool which supports the
interpretation of web pages. Magpie offers complementary knowledge sources, which a reader can call upon to quickly gain access to any background knowledge relevant to a web resource. Magpie automatically associates an ontologybased
semantic layer to web resources, allowing relevant services to be invoked within a standard web browser. Hence, Magpie may be seen as a step towards a semantic web browser. The functionality of Magpie is illustrated using examples of how it has been integrated with our lab’s web resources
A remark on an overdetermined problem in Riemannian Geometry
Let be a Riemannian manifold with a distinguished point and
assume that the geodesic distance from is an isoparametric function.
Let be a bounded domain, with , and consider
the problem in with on ,
where is the -Laplacian of . We prove that if the normal
derivative of along the boundary of is a
function of satisfying suitable conditions, then must be a
geodesic ball. In particular, our result applies to open balls of
equipped with a rotationally symmetric metric of the form
, where is the standard metric of the sphere.Comment: 8 pages. This paper has been written for possible publication in a
special volume dedicated to the conference "Geometric Properties for
Parabolic and Elliptic PDE's. 4th Italian-Japanese Workshop", organized in
Palinuro in May 201
Electron surface layer at the interface of a plasma and a dielectric wall
We study the potential and the charge distribution across the interface of a
plasma and a dielectric wall. For this purpose, the charge bound to the wall is
modelled as a quasi-stationary electron surface layer which satisfies Poisson's
equation and minimizes the grand canonical potential of the wall-thermalized
excess electrons constituting the wall charge. Based on an effective model for
a graded interface taking into account the image potential and the offset of
the conduction band to the potential just outside the dielectric, we
specifically calculate the potential and the electron distribution for
magnesium oxide, silicon dioxide and sapphire surfaces in contact with a helium
discharge. Depending on the electron affinity of the surface, we find two
vastly different behaviors. For negative electron affinity, electrons do not
penetrate into the wall and an external surface charge is formed in the image
potential, while for positive electron affinity, electrons penetrate into the
wall and a space charge layer develops in the interior of the dielectric. We
also investigate how the electron surface layer merges with the bulk of the
dielectric.Comment: 15 pages, 9 figures, accepted versio
Synergistic Formation of Radicals by Irradiation with Both Vacuum Ultraviolet and Atomic Hydrogen: A Real-Time In Situ Electron Spin Resonance Study
We report on the surface modification of polytetrafluoroethylene (PTFE) as an
example of soft- and bio-materials that occur under plasma discharge by
kinetics analysis of radical formation using in situ real-time electron spin
resonance (ESR) measurements. During irradiation with hydrogen plasma,
simultaneous measurements of the gas-phase ESR signals of atomic hydrogen and
the carbon dangling bond (C-DB) on PTFE were performed. Dynamic changes of the
C-DB density were observed in real time, where the rate of density change was
accelerated during initial irradiation and then became constant over time. It
is noteworthy that C-DBs were formed synergistically by irradiation with both
vacuum ultraviolet (VUV) and atomic hydrogen. The in situ real-time ESR
technique is useful to elucidate synergistic roles during plasma surface
modification.Comment: 14 pages, 4 figure
Auger de-excitation of metastable molecules at metallic surfaces
We study secondary electron emission from metallic surfaces due to Auger
de-excitation of diatomic metastable molecules. Our approach is based on an
effective model for the two active electrons involved in the process -- a
molecular electron described by a linear combination of atomic orbitals when it
is bound and a two-center Coulomb wave when it is not and a metal electron
described by the eigenfunctions of a step potential -- and employs Keldysh
Green's functions. Solving the Dyson equation for the retarded Green's function
by exponential resummation we are able to treat time-nonlocal self-energies and
to avoid the wide-band approximation.Results are presented for the
de-excitation of \NitrogenDominantMetastableState\ on aluminum and tungsten and
discussed in view of previous experimental and theoretical investigations. We
find quantitative agreement with experimental data for tungsten indicating that
the effective model captures the physics of the process quite well. For
aluminum we predict secondary electron emission due to Auger de-excitation to
be one to two orders of magnitude smaller than the one found for resonant
charge-transfer and subsequent auto-detachment.Comment: 15 pages, 9 figures, revised version using an improved
single-electron basi
Electron heating mechanisms in dual frequency capacitive discharges
We discuss electron heating mechanisms in the sheath regions of dual-frequency capacitive discharges, with the twin aims of identifying the dominant mechanisms and supplying closed-form expressions from which the heating power can be estimated. We show that the heating effect produced by either Ohmic or collisionless heating is much larger when the discharge is excited by a superposition of currents at two frequencies than if either current had acted alone. This coupling effect occurs because the lower frequency current, while not directly heating the electrons to any great extent, strongly affects the spatial structure of the discharge in the sheath regions
Algebraic varieties with automorphism groups of maximal rank
We confirm, to some extent, the belief that a projective variety X has the
largest number (relative to the dimension of X) of independent commuting
automorphisms of positive entropy only when X is birational to a complex torus
or a quotient of a torus. We also include an addendum to an early paper though
it is not used in the present paper.Comment: Mathematische Annalen (to appear
- …
