56 research outputs found
Vacancy-Impurity Nanoclusters in Solid Solutions
The existence of vacancy--impurity clusters due to quantum properties of
vacancies in phase separated solid solutions of 4He in 3He is analyzed and
discussed. Additional mechanism called vacancy assisted nucleation is proposed.
According to this assumption the vacancy-impurity clusters should have b.c.c.
structure.Comment: 5 pages, 1 figure, Late
Observation of acoustic turbulence in a system of nonlinear second sound waves in superfluid 4He.
We discuss the results of recent studies of acoustic turbulence in a system of nonlinear second sound waves in a high-quality resonator filled with superfluid 4He. It was found that, when the driving amplitude was sufficiently increased, a steady-state direct wave cascade is formed involving a flux of energy towards high frequencies. The wave amplitude distribution follows a power law over a wide range of frequencies. Development of a decay instability at high driving amplitudes results in the formation of subharmonics of the driving frequency, and to a backflow of energy towards the low-frequency spectral domain, in addition to the direct cascade
Statistical properties of strongly nonlinear waves within a resonator.
An experimental investigation of nonlinear waves is reported for a system of one-dimensional second sound waves in superfluid helium within a cylindrical resonator of high Q quality factor. The strong nonlinear dependence of the wave velocity on amplitude distorts the wave shape and leads to the formation of multiple harmonics. The restricted geometry of the resonator results in a discrete energy spectrum, where the energy is transmitted from the driving frequency to the high-frequency edge of the spectrum, where dissipation occurs—a Kolmogorov-like energy distribution. It is found that the main resonance occurs at the driving frequency, and that the next few harmonics are approximately sinusoidal, coherent with the driving force, but that higher harmonics appear to be chaotic and are no longer phase coherent with the drive. For developed turbulence, the probability density function of the high-frequency harmonics is well approximated by a Gaussian distribution. Thus, the nonlinear acoustic waves exhibit the statistical properties distinctive of weak turbulence, confirming that they can properly be treated in terms of a statistical description
Neutron reflection from the liquid helium surface.
The reflection of neutrons from a helium surface has been observed for the first time. The 4He surface is smoother in the superfluid state at 1.54 K than in the case of the normal liquid at 2.3 K. In the superfluid state we also observe a surface layer ~200 Å thick which has a subtly different neutron scattering cross-section, which may be explained by an enhanced Bose-Einstein condensate fraction close to the helium surface. The application of neutron reflectometry described in this paper creates new and exciting opportunities for the surface and interfacial study of quantum fluids
Global Lagrangian atmospheric dispersion model
The Global Lagrangian Atmospheric Dispersion Model (GLADIM) is described. GLADIM is based on the global trajectory model, which had been developed earlier and uses fields of weather parameters from different atmospheric reanalysis centers for calculations of trajectories of air mass that include trace gases. GLADIM includes the parameterization of turbulent diffusion and allows the forward calculation of concentrations of atmospheric tracers at nodes of a global regular grid when a source is specified. Thus, GLADIM can be used for the forward simulation of pollutant propagation (volcanic ash, radionuclides, and so on). Working in the reverse direction, GLADIM allows the detection of remote sources that mainly contribute to the tracer concentration at an observation point. This property of Lagrangian models is widely used for data analysis and the reverse modeling of emission sources of a pollutant specified. In this work we describe the model and some results of its validation through a comparison with results of a similar model and observation data
Experiments on wave turbulence : the evolution and growth of second sound acoustic turbulence in superfluid 4He confirm self-similarity.
We report our experiments on the formation of second sound acoustic turbulence in superfluid 4He. The initial growth in spectral amplitude follows power laws that steepen rapidly with increasing harmonic number n, corresponding to a propagating front in frequency space. The lower growth exponents agree well with analytic predictions and numerical modeling. The observed increase in the formation delay with n validates the concept of selfsimilarity in the growth of wave turbulence
Extreme events in two dimensional disordered nonlinear lattices
Spatiotemporal complexity is induced in a two dimensional nonlinear
disordered lattice through the modulational instability of an initially weakly
perturbed excitation. In the course of evolution we observe the formation of
transient as well as persistent localized structures, some of which have
extreme magnitude. We analyze the statistics of occurrence of these extreme
collective events and find that the appearance of transient extreme events is
more likely in the weakly nonlinear regime. We observe a transition in the
extreme events recurrence time probability from exponential, in the
nonlinearity dominated regime, to power law for the disordered one.Comment: 5 figures, 5 page
Observation of an Inverse Energy Cascade in Developed Acoustic Turbulence in Superfluid Helium
We report observation of an inverse energy cascade in second sound acoustic
turbulence in He II. Its onset occurs above a critical driving energy and it is
accompanied by giant waves that constitute an acoustic analogue of the rogue
waves that occasionally appear on the surface of the ocean. The theory of the
phenomenon is developed and shown to be in good agreement with the experiments.Comment: 4 pages, 5 figures. The final version just prior to publicatio
- …