45 research outputs found

    Stink Bug Feeding Induces Fluorescence in Developing Cotton Bolls

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stink bugs (Hemiptera: Pentatomidae) comprise a critically important insect pest complex affecting 12 major crops worldwide including cotton. In the US, stink bug damage to developing cotton bolls causes boll abscission, lint staining, reduced fiber quality, and reduced yields with estimated losses ranging from 10 to 60 million dollars annually. Unfortunately, scouting for stink bug damage in the field is laborious and excessively time consuming. To improve scouting accuracy and efficiency, we investigated fluorescence changes in cotton boll tissues as a result of stink bug feeding.</p> <p>Results</p> <p>Fluorescent imaging under long-wave ultraviolet light showed that stink bug-damaged lint, the inner carpal wall, and the outside of the boll emitted strong blue-green fluorescence in a circular region near the puncture wound, whereas undamaged tissue emissions occurred at different wavelengths; the much weaker emission of undamaged tissue was dominated by chlorophyll fluorescence. We further characterized the optimum emission and excitation spectra to distinguish between stink bug damaged bolls from undamaged bolls.</p> <p>Conclusions</p> <p>The observed characteristic fluorescence peaks associated with stink bug damage give rise to a fluorescence-based method to rapidly distinguish between undamaged and stink bug damaged cotton bolls. Based on the fluorescent fingerprint, we envision a fluorescence reflectance imaging or a fluorescence ratiometric device to assist pest management professionals with rapidly determining the extent of stink bug damage in a cotton field.</p

    Imaging of Flow Patterns with Fluorescent Molecular Rotors

    Get PDF
    Molecular rotors are a group of fluorescent molecules that form twisted intramolecular charge transfer states (TICT) upon photoexcitation. Some classes of molecular rotors, among them those that are built on the benzylidene malononitrile motif, return to the ground state either by nonradiative intramolecular rotation or by fluorescence emission. In low-viscosity solvents, intramolecular rotation dominates, and the fluorescence quantum yield is low. Higher solvent viscosities reduce the intramolecular rotation rate, thus increasing the quantum yield. We recently described a different mechanism whereby the fluorescence quantum yield of the molecular rotor also depends on the shear stress of the solvent. In this study, we examined a possible application for shear-sensitive molecular rotors for imaging flow patterns in fluidic chambers. Flow chambers with different geometries were constructed from polycarbonate or acrylic. Solutions of molecular rotors in ethylene glycol were injected into the chamber under controlled flow rates. LED-induced fluorescence (LIF) images of the flow chambers were taken with a digital camera, and the intensity difference between flow and no-flow images was visualized and compared to computed fluid dynamics (CFD) simulations. Intensity differences were detectable with average flow rates as low as 0.1 mm/s, and an exponential association between flow rate and intensity increase was found. Furthermore, a good qualitative match to computed fluid dynamics simulations was seen. On the other hand, prolonged exposure to light reduced the emission intensity. With its high sensitivity and high spatial and temporal resolution, imaging of flow patterns with molecular rotors may become a useful tool in microfluidics, flow measurement, and control

    Apparent Shear Sensitivity of Molecular Rotors in Various Solvents

    Full text link
    Fluorescent environment-sensitive dyes often change their spectral properties concomitantly with multiple solvent properties, such as polarity, protonation, hydrogen bond formation, or viscosity. Careful consideration of the response is needed when a fluorescent dye is used to report a single property. Recently, we observed an increase of emission intensity of viscosity-sensitive molecular rotors in fluids subject to flow and speculated that either polar-polar interaction or hydrogen bond formation play a role in the apparent flow sensitivity. In this study, we show experimental evidence that photoisomerization to an isomer with a lower quantum yield, first proposed by Rumble et al. (J Phys Chem A 116(44):10786-10792, 2012), plays a key role in the observed phenomenon. We subjected four molecular rotors with different electron acceptor motifs to fluid flow in solvents of different polarity and ability to form hydrogen bonds. We also measured the isomerization dynamics in a custom fluorophotometer with extremely low light exposure. Our results indicate that the photoisomerization rate depends both on the solvent and on the electron acceptor group, as does the recovery of the original isomer in the dark. In most solvents, recovery of the dark isomer is much more rapid than originally reported, and a state of quasi-equilibrium between both isomers is possible. Moreover, the sensitivity (i.e., relative intensity increase at the same flow rate) is also solvent-dependent. The intensity increase can be detected at very low velocities (as low as 0.06 mm/s). Characteristic for fluorescent dyes is the high spatial resolution, and no flow measurement device with comparable sensitivity and spatial resolution exists, although the nature of the solvent needs to be taken into account for quantitative flow measurement

    Effect of wood smoke exposure on vascular function and thrombus formation in healthy fire fighters

    Get PDF
    Background: Myocardial infarction is the leading cause of death in fire fighters and has been linked with exposure to air pollution and fire suppression duties. We therefore investigated the effects of wood smoke exposure on vascular vasomotor and fibrinolytic function, and thrombus formation in healthy fire fighters. Methods: In a double-blind randomized cross-over study, 16 healthy male fire fighters were exposed to wood smoke (~1 mg/m3 particulate matter concentration) or filtered air for one hour during intermittent exercise. Arterial pressure and stiffness were measured before and immediately after exposure, and forearm blood flow was measured during intra-brachial infusion of endothelium-dependent and -independent vasodilators 4–6 hours after exposure. Thrombus formation was assessed using the ex vivo Badimon chamber at 2 hours, and platelet activation was measured using flow cytometry for up to 24 hours after the exposure. Results: Compared to filtered air, exposure to wood smoke increased blood carboxyhaemoglobin concentrations (1.3% versus 0.8%; P &lt; 0.001), but had no effect on arterial pressure, augmentation index or pulse wave velocity (P &gt; 0.05 for all). Whilst there was a dose-dependent increase in forearm blood flow with each vasodilator (P &lt; 0.01 for all), there were no differences in blood flow responses to acetylcholine, sodium nitroprusside or verapamil between exposures (P &gt; 0.05 for all). Following exposure to wood smoke, vasodilatation to bradykinin increased (P = 0.003), but there was no effect on bradykinin-induced tissue-plasminogen activator release, thrombus area or markers of platelet activation (P &gt; 0.05 for all). Conclusions: Wood smoke exposure does not impair vascular vasomotor or fibrinolytic function, or increase thrombus formation in fire fighters. Acute cardiovascular events following fire suppression may be precipitated by exposure to other air pollutants or through other mechanisms, such as strenuous physical exertion and dehydration.Originally included in thesis in manuscript form.</p

    Biomarkers in Usher syndrome: ultra-widefield fundus autofluorescence and optical coherence tomography findings and their correlation with visual acuity and electrophysiology findings

    No full text
    Purpose: To investigate the functional and structural biomarkers and their correlation with Usher syndrome (USH). Methods: Medical records, imaging and electrophysiology test results of USH patients attending the Save Sight Institute between 2012 and 2017 were reviewed. Best corrected visual acuity (BCVA), ultra-widefield autofluorescence (UW-FAF), spectral-domain optical coherence tomography (SD-OCT), full-field electroretinogram and pattern electroretinogram (pERG) were performed. SD-OCT scans assessed central macular thickness (CMT), greatest linear diameter of preserved outer retinal layers\u2014macular island (MI) and presence of cystoid macular edema (CME). UW-FAF images were qualitatively graded to identify hypo/hyperfluorescence patterns in the peripheral fundus. Results: Thirty-six eyes from 18 subjects were included. Mean BCVA was 0.22 \ub1 0.3 LogMAR. MI extent was significantly associated with better vision (\u3b2 = 12 0.175 per 1000&nbsp;\ub5m; R2 = 0.487; P = 0.002; Fig.&nbsp;4). A higher pERG P50 was associated with a larger macular island (\u3b2 = 782 per \ub5V; R2 = 0.238; P = 0.025), while a higher pERG N95 was associated with a smaller macular island (\u3b2 = 12 499 per \ub5V; R2 = 0.219; P = 0.030). Mean CMT was 271 \ub1 35&nbsp;\u3bcm and was significantly associated with better vision (\u3b2 = 12 0.083 per 10&nbsp;\ub5m; R2 = 0.612; P &lt; 0.001). CME was diagnosed in 47.2% (n = 17) eyes. There was no significant difference in mean BCVA for those with CME (0.19 \ub1 0.2 LogMAR) and without CME (0.40 \ub1 0.5; R2 = 0.081; P = 0.17). All patients had abnormal UW-FAF. Four main patterns of change were identified (granular 55%, annular 11%, bone spicule 17% and patchy 17%). Patients with the patchy pattern demonstrated worse BCVA in comparison with those with granular (P &lt; 0.0001) and bone spicule (P = 0.0179) patterns. Conclusions: Structural changes identified on OCT and UW-FAF correlated with BCVA and pERG in this cohort representing different stages of the disease. These parameters could represent reliable biomarkers in therapeutic clinical trials on USH
    corecore