59 research outputs found
Kinetic CRAC uncovers a role for Nab3 in determining gene expression profiles during stress
RNA-binding proteins play a key role in shaping gene expression profiles during stress, however, little is known about the dynamic nature of these interactions and how this influences the kinetics of gene expression. To address this, we developed kinetic cross-linking and analysis of cDNAs (\u3c7CRAC), an ultraviolet cross-linking method that enabled us to quantitatively measure the dynamics of protein\u2013RNA interactions in vivo on a minute time-scale. Here, using \u3c7CRAC we measure the global RNA-binding dynamics of the yeast transcription termination factor Nab3 in response to glucose starvation. These measurements reveal rapid changes in protein\u2013RNA interactions within 1\u2009min following stress imposition. Changes in Nab3 binding are largely independent of alterations in transcription rate during the early stages of stress response, indicating orthogonal transcriptional control mechanisms. We also uncover a function for Nab3 in dampening expression of stress-responsive genes. \u3c7CRAC has the potential to greatly enhance our understanding of in vivo dynamics of protein\u2013RNA interactions
Integrated multi-omics analyses reveal the pleiotropic nature of the control of gene expression by Puf3p
The PUF family of RNA-binding proteins regulate gene expression post-transcriptionally. Saccharomyces cerevisiae Puf3p is characterised as binding nuclear-encoded mRNAs specifying mitochondrial proteins. Extensive studies of its regulation of COX17 demonstrate its role in mRNA decay. Using integrated genome-wide approaches we define an expanded set of Puf3p target mRNAs and quantitatively assessed the global impact of loss of PUF3 on gene expression using mRNA and polysome profiling and quantitative proteomics. In agreement with prior studies, our sequencing of affinity-purified Puf3-TAP associated mRNAs (RIP-seq) identified mRNAs encoding mitochondrially-targeted proteins. Additionally, we also found 720 new mRNA targets that predominantly encode proteins that enter the nucleus. Comparing transcript levels in wild-type and puf3∆ cells revealed that only a small fraction of mRNA levels alter, suggesting Puf3p determines mRNA stability for only a limited subset of its target mRNAs. Finally, proteomic and translatomic studies suggest that loss of Puf3p has widespread, but modest, impact on mRNA translation. Taken together our integrated multi-omics data point to multiple classes of Puf3p targets, which display coherent post-transcriptional regulatory properties and suggest Puf3p plays a broad, but nuanced, role in the fine-tuning of gene expression
Successful application of ancient DNA extraction and library construction protocols to museum wet collection specimens
Millions of scientific specimens are housed in museum collections, a large part of which are fluid preserved. The use of formaldehyde as fixative and subsequent storage in ethanol is especially common in ichthyology and herpetology. This type of preservation damages DNA and reduces the chance of successful retrieval of genetic data. We applied ancient DNA extraction and single stranded library construction protocols to a variety of vertebrate samples obtained from wet collections and of different ages. Our results show that almost all samples tested yielded endogenous DNA. Archival DNA extraction was successful across different tissue types as well as using small amounts of tissue. Conversion of archival DNA fragments into single-stranded libraries resulted in usable data even for samples with initially undetectable DNA amounts. Subsequent target capture approaches for mitochondrial DNA using homemade baits on a subset of 30 samples resulted in almost complete mitochondrial genome sequences in several instances. Thus, application of ancient DNA methodology makes wet collection specimens, including type material as well as rare, old or extinct species, accessible for genetic and genomic analyses. Our results, accompanied by detailed step-by-step protocols, are a large step forward to open the DNA archive of museum wet collections for scientific studies
Embryonal Rhabdomyosarcoma with Posttherapy Cytodifferentiation and Aggressive Clinical Course
Rhabdomyosarcoma is the most common soft tissue sarcoma in children and adolescents. Embryonal rhabdomyosarcoma (ERMS), its most common subtype, is a malignant soft tissue tumor with morphologic and immunophenotypic features of embryonic skeletal muscle. The histologic findings in ERMS typically include a range of differentiation in rhabdomyoblasts from primitive to terminally differentiated forms, and the latter become more prominent after chemotherapy-induced cytodifferentiation. Several reports have shown therapy-related cytodifferentiation to portend a good prognosis in ERMS. We discuss the case of a pediatric patient who presented with ERMS of the orbit. Although her tumor showed extensive posttreatment cytodifferentiation and several other good prognostic clinicopathologic factors, it pursued an aggressive course, resulting in early metastasis and death. This case represents an unusual course and may be instructive as to the clinicopathologic features impacting prognostication, and ultimately the biology, of this aggressive family of tumors
- …