529 research outputs found

    On the non-ergodicity of the Swendsen-Wang-Kotecky algorithm on the kagome lattice

    Get PDF
    We study the properties of the Wang-Swendsen-Kotecky cluster Monte Carlo algorithm for simulating the 3-state kagome-lattice Potts antiferromagnet at zero temperature. We prove that this algorithm is not ergodic for symmetric subsets of the kagome lattice with fully periodic boundary conditions: given an initial configuration, not all configurations are accessible via Monte Carlo steps. The same conclusion holds for single-site dynamics.Comment: Latex2e. 22 pages. Contains 11 figures using pstricks package. Uses iopart.sty. Final version accepted in journa

    Enhancing the spectral gap of networks by node removal

    Full text link
    Dynamics on networks are often characterized by the second smallest eigenvalue of the Laplacian matrix of the network, which is called the spectral gap. Examples include the threshold coupling strength for synchronization and the relaxation time of a random walk. A large spectral gap is usually associated with high network performance, such as facilitated synchronization and rapid convergence. In this study, we seek to enhance the spectral gap of undirected and unweighted networks by removing nodes because, practically, the removal of nodes often costs less than the addition of nodes, addition of links, and rewiring of links. In particular, we develop a perturbative method to achieve this goal. The proposed method realizes better performance than other heuristic methods on various model and real networks. The spectral gap increases as we remove up to half the nodes in most of these networks.Comment: 5 figure

    Diffusion dynamics on multiplex networks

    Get PDF
    We study the time scales associated to diffusion processes that take place on multiplex networks, i.e. on a set of networks linked through interconnected layers. To this end, we propose the construction of a supra-Laplacian matrix, which consists of a dimensional lifting of the Laplacian matrix of each layer of the multiplex network. We use perturbative analysis to reveal analytically the structure of eigenvectors and eigenvalues of the complete network in terms of the spectral properties of the individual layers. The spectrum of the supra-Laplacian allows us to understand the physics of diffusion-like processes on top of multiplex networks.Comment: 6 Pages including supplemental material. To appear in Physical Review Letter

    Fundamental Cycles and Graph Embeddings

    Full text link
    In this paper we present a new Good Characterization of maximum genus of a graph which makes a common generalization of the works of Xuong, Liu, and Fu et al. Based on this, we find a new polynomially bounded algorithm to find the maximum genus of a graph

    Analysis of Nonlinear Synchronization Dynamics of Oscillator Networks by Laplacian Spectral Methods

    Full text link
    We analyze the synchronization dynamics of phase oscillators far from the synchronization manifold, including the onset of synchronization on scale-free networks with low and high clustering coefficients. We use normal coordinates and corresponding time-averaged velocities derived from the Laplacian matrix, which reflects the network's topology. In terms of these coordinates, synchronization manifests itself as a contraction of the dynamics onto progressively lower-dimensional submanifolds of phase space spanned by Laplacian eigenvectors with lower eigenvalues. Differences between high and low clustering networks can be correlated with features of the Laplacian spectrum. For example, the inhibition of full synchoronization at high clustering is associated with a group of low-lying modes that fail to lock even at strong coupling, while the advanced partial synchronizationat low coupling noted elsewhere is associated with high-eigenvalue modes.Comment: Revised version: References added, introduction rewritten, additional minor changes for clarit

    Finding a subdivision of a prescribed digraph of order 4

    Get PDF
    The problem of when a given digraph contains a subdivision of a fixed digraph F is considered.Bang-Jensen et al. [2] laid out foundations for approaching this problem from the algorithmic pointof view. In this paper we give further support to several open conjectures and speculations about algorithmiccomplexity of finding F-subdivisions. In particular, up to 5 exceptions, we completely classify forwhich 4-vertex digraphs F, the F-subdivision problem is polynomial-time solvable and for which it is NPcomplete.While all NP-hardness proofs are made by reduction from some version of the 2-linkage problemin digraphs, some of the polynomial-time solvable cases involve relatively complicated algorithms

    Local chromatic number of quadrangulations of surfaces

    Get PDF
    The local chromatic number of a graph G, as introduced in [4], is the minimum integer k such that G admits a proper coloring (with an arbitrary number of colors) in which the neighborhood of each vertex uses less than k colors. In [17] a connection of the local chromatic number to topological properties of (a box complex of) the graph was established and in [18] it was shown that a topological condition implying the usual chromatic number being at least four has the stronger consequence that the local chromatic number is also at least four. As a consequence one obtains a generalization of the following theorem of Youngs [19]: If a quadrangulation of the projective plane is not bipartite it has chromatic number four. The generalization states that in this case the local chromatic number is also four. Both papers [1] and [13] generalize Youngs’ result to arbitrary non-orientable surfaces replacing the condition of the graph being not bipartite by a more technical condition of an odd quadrangulation. This paper investigates when these general results are true for the local chromatic number instead of the chromatic number. Surprisingly, we find out that (unlike in the case of the chromatic number) this depends on the genus of the surface. For the non-orientable surfaces of genus at most four, the local chromatic number of any odd quadrangulation is at least four, but this is not true for non-orientable surfaces of genus 5 or higher. We also prove that face subdivisions of odd quadrangulations and Fisk triangulations of arbitrary surfaces exhibit the same behavior for the local chromatic number as they do for the usual chromatic number

    Laplacian spectra of complex networks and random walks on them: Are scale-free architectures really important?

    Full text link
    We study the Laplacian operator of an uncorrelated random network and, as an application, consider hopping processes (diffusion, random walks, signal propagation, etc.) on networks. We develop a strict approach to these problems. We derive an exact closed set of integral equations, which provide the averages of the Laplacian operator's resolvent. This enables us to describe the propagation of a signal and random walks on the network. We show that the determining parameter in this problem is the minimum degree qmq_m of vertices in the network and that the high-degree part of the degree distribution is not that essential. The position of the lower edge of the Laplacian spectrum λc\lambda_c appears to be the same as in the regular Bethe lattice with the coordination number qmq_m. Namely, λc>0\lambda_c>0 if qm>2q_m>2, and λc=0\lambda_c=0 if qm2q_m\leq2. In both these cases the density of eigenvalues ρ(λ)0\rho(\lambda)\to0 as λλc+0\lambda\to\lambda_c+0, but the limiting behaviors near λc\lambda_c are very different. In terms of a distance from a starting vertex, the hopping propagator is a steady moving Gaussian, broadening with time. This picture qualitatively coincides with that for a regular Bethe lattice. Our analytical results include the spectral density ρ(λ)\rho(\lambda) near λc\lambda_c and the long-time asymptotics of the autocorrelator and the propagator.Comment: 25 pages, 4 figure

    Boxicity of graphs on surfaces

    Get PDF
    The boxicity of a graph G=(V,E)G=(V,E) is the least integer kk for which there exist kk interval graphs Gi=(V,Ei)G_i=(V,E_i), 1ik1 \le i \le k, such that E=E1...EkE=E_1 \cap ... \cap E_k. Scheinerman proved in 1984 that outerplanar graphs have boxicity at most two and Thomassen proved in 1986 that planar graphs have boxicity at most three. In this note we prove that the boxicity of toroidal graphs is at most 7, and that the boxicity of graphs embeddable in a surface Σ\Sigma of genus gg is at most 5g+35g+3. This result yields improved bounds on the dimension of the adjacency poset of graphs on surfaces.Comment: 9 pages, 2 figure
    corecore