Blocking nonorientability of a surface

Bojan Mohar ${ }^{\text {a, }, ~}$ and Alexander Schrijver ${ }^{\text {b }}$
" Department of Mathematics, University of Ljubljana, Jadranska 19, 1111 Ljubljana, Slovenia
${ }^{1}$ CWI, Kruislaan 413, Amsterdam, The Netherlands

Received 6 December 2001

Abstract

Let \mathbb{S} be a nonorientable surface. A collection of pairwise noncrossing simple closed curves in \mathbb{S} is a blockage if every one-sided simple closed curve in \mathbb{S} crosses at least one of them. Robertson and Thomas [9] conjectured that the orientable genus of any graph G embedded in \mathbb{S} with sufficiently large face-width is "roughly" equal to one-half of the minimum number of intersections of a blockage with the graph. The conjecture was disproved by Mohar (Discrete Math. 182 (1998) 245) and replaced by a similar one. In this paper, it is proved that the conjectures in Mohar (1998) and Robertson and Thomas (J. Graph Theory 15 (1991) 407) hold up to a constant error term: For any graph G embedded in \mathbb{S}, the orientable genus of G differs from the conjectured value at most by $O\left(g^{2}\right)$, where g is the genus of \mathbb{S}.

(c) 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

We follow standard graph theory terminology [2]. By a surface we mean a compact connected PL 2-manifold without boundary. The genus $\mathbf{g}(\mathrm{G})$ of a graph G is the smallest integer g such that G has an embedding in the orientable surface $\mathbb{S}_{!!}$of genus g. The nonorientable surface of genus g will be denoted by $\mathbb{N}_{t!}$. So, \mathbb{N}_{1} is the projective plane and \mathbb{N}_{2} is the Klein bottle. The nonorientable yenus of G is the smallest y such that G admits an embedding in \mathbb{N}_{4}.

All embeddings of graphs in surfaces considered in this paper are 2-cell embeddings in which every face is homeomorphic to an open disk in the plane. If II is an

[^0]embedding of a connected graph G in some surface, the Euler genus of Π is defined as the number $\operatorname{eg}(G, \Pi)=2-|V(G)|+|E(G)|-f$, where f is the number of Π-facial walks. We refer to [8] for additional information on embeddings of graphs in surfaces.

A closed curve on a surface \mathbb{S} is a continuous PL mapping $\gamma: S^{1} \rightarrow \mathbb{S}$, and we sometimes identify γ with its image $\gamma\left(S^{\downarrow}\right)$ in \mathbb{S}. If a graph G is embedded in \mathbb{S}, then $\operatorname{cr}(\gamma, G)$ denotes the number of points $z \in S^{1}$ such that $\gamma(z)$ is a point of G in \mathbb{S}. The curve γ is one-sided if every neighborhood of γ on \mathbb{S} contains a Möbius strip, and two-sided otherwise.

2. The orientable genus of graphs with a given nonorientable embedding

Let Π be a (2-cell) embedding of a graph G into a nonplanar surface \mathbb{S}, i.e. a surface distinct from the 2 -sphere. Then we define the face-width $\mathbf{f w}(G, \Pi)$ (also called the representativity) of the embedding Π as the minimum number of facial walks of G whose union contains a noncontractible curve. Alternatively, $\mathrm{fw}(G, \Pi)$ is the minimum $\operatorname{cr}(\gamma, G)$ taken over all noncontractible closed curves γ on \mathbb{S}.

It is easy to see that the nonorientable genus of every graph G is bounded by a linear function of the genus $\mathbf{g}(G)$. On the other hand, Auslander, Brown, and Youngs [1] proved that there are graphs embeddable in the projective plane whose orientable genus is arbitrarily large. This phenomenon is now appropriately understood after Fiedler et al. [3] proved that the genus $\mathbf{g}(G)$ of a graph G that is Π-embedded in the projective plane equals

$$
\begin{equation*}
\mathbf{g}(G)=\left\lfloor\frac{1}{2} \mathbf{f w}(\Pi)\right\rfloor \tag{1}
\end{equation*}
$$

if $\mathbf{f} \mathbf{w}(\Pi) \neq 2$. If $\mathbf{f w}(\Pi)=2$, then $\mathbf{g}(G)$ is either 0 or 1 .
This result has been generalized to the Klein bottle by Robertson and Thomas [9] as follows. Let Π be an embedding of G in \mathbb{N}_{2}. Denote by $\operatorname{ord}_{2}(G, \Pi)$ the minimum of $\lceil\operatorname{cr}(\gamma, G) / 2\rceil$ taken over all noncontractible and nonseparating twosided simple closed curves i^{\prime}. Similarly, let $\operatorname{ord}_{1}(G, \Pi)$ denote the minimum of $\left\lfloor\operatorname{cr}\left(\gamma_{1}, G\right) / 2\right\rfloor+$ $\left\lfloor\operatorname{cr}\left(i_{2}, G\right) / 2\right\rfloor$ taken over all pairs i_{1}, i_{2} of nonhomotopic onesided simple closed curves. The latter minimum restricted to all noncrossing pairs i_{1}, i_{2} of onesided simple closed curves is denoted by ord ${ }_{1}^{\prime}(G, \Pi)$. Let

$$
\begin{equation*}
g=\min \left\{\operatorname{ord}_{1}(G, \Pi), \operatorname{ord}_{2}(G, \Pi)\right\} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
y^{\prime}=\min \left\{\operatorname{ord}_{1}^{\prime}(G, \Pi), \operatorname{ord}_{2}(G, \Pi)\right\} \tag{3}
\end{equation*}
$$

Robertson and Thomas [9] proved that if $y \geqslant 4$, then $\mathbf{g}(G)=y=y^{\prime}$. Eqs. (1) and (2) imply that the genus of graphs that can be embedded in the projective plane or the Klein bottle can be computed in polynomial time.

By Thomassen [10], genus testing is NP-complete for general graphs. Therefore, it is interesting that the classes of projective planar graphs and graphs embeddable in
the Klein bottle admit a polynomial time genus testing algorithm. Very likely the genus problem for graphs with bounded nonorientable genus is solvable in polynomial time as suggested in [9].

Robertson and Thomas [9] conjectured that (1) and (2) can be generalized as follows. Suppose that $\Gamma=\left\{\gamma_{1}, \ldots, \gamma_{p}\right\}$ is a set of closed curves in the surface \mathbb{N}_{k}. Then Γ is crossing-free if the following holds:
(a) No γ_{i} crosses itself.
(b) For $1 \leqslant i<j \leqslant p$, the curves i_{i} and γ_{j} do not cross each other.

If there exist simple closed curves $\gamma_{1}^{\prime}, \ldots, i_{p}^{\prime}$ with pairwise disjoint images in \mathbb{N}_{k} such that γ_{i}^{\prime} is homotopic to $\gamma_{i}^{\prime}(i=1, \ldots, p)$ and such that every onesided closed curve in \mathbb{N}_{k} crosses at least one of the curves $\gamma_{1}^{\prime}, \ldots, \gamma_{p}^{\prime}$, then we say that the family Γ is a blockage and that Γ blocks onesided curves in the surface.

Suppose that a graph G is embedded in \mathbb{N}_{k}. Robertson and Thomas [9] define the order of a blockage $\Gamma=\left\{\gamma_{1}, \ldots, \gamma_{p}\right\}$ as

$$
\begin{equation*}
\operatorname{ord}(\Gamma, G)=\frac{1}{2}(k-2 p+s)+\sum_{i=1}^{p} \operatorname{ord}\left(\gamma_{i}, G\right) \tag{4}
\end{equation*}
$$

where s is the number of onesided closed curves in Γ and

$$
\operatorname{ord}\left(\gamma_{i}^{\prime}, G\right)= \begin{cases}\left\lfloor\operatorname{cr}\left(\gamma_{i}, G\right) / 2\right\rfloor & \text { if } \gamma_{i} \text { is onesided } \\ \left\lceil\operatorname{cr}\left(\gamma_{i}, G\right) / 2\right\rceil & \text { if } \gamma_{i}^{\prime} \text { is twosided. }\end{cases}
$$

Let us observe that the term $\frac{1}{2}(k-2 p+s)$ in (4) is an integer and that it is equal to the genus of the (bordered) orientable surface obtained by cutting \mathbb{N}_{k} along the curves in Γ. It is easy to prove [9]:

Lemma 2.1. Let G be a graph embedded in \mathbb{N}_{k}, and let Γ be a blockage in \mathbb{N}_{k}. Then $\mathrm{g}(G) \leqslant \operatorname{ord}(\Gamma, G)$.

Based on (1)-(3) and Lemma 2.1, Robertson and Thomas proposed the following.
Conjecture 2.2 (Robertson and Thomas [9]). Suppose that G is embedded in $\mathbb{N}_{\text {h }}$ with sufficiently large face-width. Let g (respectively g^{\prime}) be the minimum order of a blockage (crossing-free blockaye) in \mathbb{N}_{k} Then $\mathbf{g}(G)=y=y^{\prime}$.

Mohar [7] disproved this conjecture and posed a related conjecture what the correct expression for $\mathbf{g}(G)$ might be (Conjecture 2.3). The value for the orientable genus of G conjectured in [7] can differ only by a constant (depending on k) from the conjectured value of Robertson and Thomas.

Suppose that G is embedded in \mathbb{N}_{k}. Consider a crossing-free blockage $\Gamma=$ $\left\{i_{1}^{\prime}, \ldots, \gamma_{p}\right\}$ and cut the surface \mathbb{N}_{k} along $\gamma_{1}, \ldots, i_{p}$. This results in a graph \bar{G}
embedded in an orientable surface. If a vertex $a \in V(G)$ lies on at least one of the curves $\gamma_{i}(1 \leqslant i \leqslant p)$, then a gives rise to two or more vertices in \bar{G} (called copies of a). Add a new vertex $c_{\text {a }}$ and join it to all copies of a in \bar{G}. Call the resulting graph G^{\prime} and note that contraction of the new edges results in the original graph G. Now, the orientable embedding of \bar{G} defines local rotations of all vertices of G^{\prime} except for the new vertices v_{d}. The minimum genus of an orientable embedding of G^{\prime} extending this partial embedding is called the genus order of the blockage Γ. It is easy to see that in the case when no vertex of G is split into more than two vertices of \bar{G}, the genus order coincides with (4), and that in general it is majorized by (4).

Conjecture 2.3 (Mohar [7]). If G is embedded in a nonorientable surface with sufficiently large face-width, then the orientable genus of G is equal to the minimum genus order of a crossing-free blockage.

In this paper it is proved that Conjectures 2.2 and 2.3 hold up to a constant error term, even without the assumption on large face-width. It is shown that for any graph G embedded in \mathbb{N}_{y}, the orientable genus of G differs from the minimum (genus) order of a crossing-free blockage by less than $(64 g)^{2}$. See Corollary 4.8 .

3. Blocking one-sided curves

Suppose that G is a graph that is Π-embedded in some surface \mathbb{S}. We denote by $\Gamma=\Gamma(G, \Pi)$ the corresponding vertex-face graph. Its vertices are the union of vertices of G and the vertices of the geometric dual G^{*} of G, i.e., the Π facial walks. The edges of Γ correspond to the incidence of vertices and faces, with multiple edges if a vertex appears more than once on a Π-facial walk. The graph Γ has a natural quadrilateral embedding in \mathbb{S}. The geometric dual of Γ, the graph which we shall denote by $M=M(G, \Pi)$, is known as the medial graph of G.

A set $B \subseteq E(M)$ is an edge-blockage in M if every one-sided cycle of M contains an edge of B. If $B \subseteq E(M)$, let $B^{*} \subseteq E(\Gamma)$ be the set of dual edges, and let $\Gamma\left(B^{*}\right)$ be the subgraph of Γ generated by B^{*}.

Lemma 3.1. Suppose that G is Π-embedded in \mathbb{N}_{4} and that $B \subseteq E(M)$ is an edgeblockage in M that is minimal (with respect to inclusion). Then
(a) $\Gamma\left(B^{*}\right)$ is a bipartite Eulerian graph (possibly disconnected).
(b) The edge set B^{*} of $\Gamma\left(B^{*}\right)$ can be partitioned into a set of edge-disjoint crossing-free closed walks. Any such partition into crossing-free closed walks is a crossing-free blockaye in the surface.
(c) $\mathbb{N}_{4} \backslash \Gamma\left(B^{*}\right)$ is connected.
(d) Let n_{i} be the number of vertices of degree $2 i+2$ in $\Gamma\left(B^{*}\right)$. Then

$$
\begin{equation*}
\sum_{i=0}^{\gamma} i n_{i} \leqslant g-1 . \tag{5}
\end{equation*}
$$

Proof. To prove claim (a), suppose that $\Gamma\left(B^{*}\right)$ contains a vertex x of odd degree d. Let e_{1}, \ldots, e_{d} be the edges in B dual to the edges of $\Gamma\left(B^{*}\right)$ that are incident with x. By the minimality of B, there exist Π-one-sided cycles $C_{i} \subseteq E(M) \backslash\left(B \backslash e_{i}\right), i=1, \ldots, d$. Let C_{11} be the facial walk in M that corresponds to the vertex x of Γ. It is easy to see that the symmetric difference of the edges of these cycles, $C=C_{0}+C_{1}+\cdots+C_{d}$, contains a one-sided cycle in M. This yields a contradiction since C is disjoint from B.
(b) Any partition of B^{*} into closed walks is obtained as follows. For each vertex $x \in V\left(\Gamma\left(B^{*}\right)\right)$, partition the edges incident with x into pairs and then join the paired edges to form a collection 8 of closed walks in Γ (which may be viewed as closed curves in $\mathbb{N}_{4!}$). By choosing the pairs so that they are not crossing with any other chosen pair of edges incident with the same vertex, none of the curves in $\mathscr{6}$ crosses itself and no two of them cross each other.

Suppose that there is a onesided simple closed curve γ in \mathbb{N}_{9} that crosses no member of $\mathscr{\&}$. By elementary topology, it may be assumed that γ does not intersect any edge of Γ in its internal point, i.e., γ passes through faces and vertices of Γ. Then γ^{\prime} is determined (up to homotopy) by a cyclic sequence $v_{1} f_{1} v_{2} f_{2} \ldots v_{1} f_{k} v_{1}$ of vertices $v_{i} \in V(\Gamma)$ and faces f_{i} of Γ that are traversed by γ. Note that $f_{1}, \ldots, f_{k} \in V(M)$. For $i=1, \ldots, k$, let S_{i} be a walk in M that starts with the vertex f_{i-1} of M, traverses a segment of the facial walk in M which corresponds to v_{i}, and ends at f_{i}. Clearly, the closed walk W in M which is composed of S_{1}, \ldots, S_{k} is homotopic to γ (in \mathbb{N}_{4}), so it is one sided. Since γ crosses no curve from \mathscr{C}, each S_{i} contains an even number of edges of B. Let $e_{1}, \ldots, e_{2 d}$ be the edges of B that are traversed by W an odd number of times and let $C_{1}, \ldots, C_{2 d}$ be as in the proof of part (a). Then $W+C_{1}+\cdots+C_{2 d}$ contains a one-sided cycle that is disjoint from B, a contradiction.
(c) Suppose that $\mathbb{N}_{9} \backslash B^{*}$ is disconnected. Then there is an edge $e^{*} \in B^{*}$ such that on each side of e^{*} there is a different component of $\mathbb{N}_{4 /} \backslash B^{*}$. Let $e \in B$ be the edge which is dual to e. Let C be a Π-onesided cycle in $M \backslash(B \backslash e)$. Since C contains e, it intersects two components of $\mathbb{N}_{y j} \backslash B^{*}$. Therefore, C crosses B^{*} at least twice, a contradiction.
(d) $\Gamma\left(B^{*}\right)$ is a graph in \mathbb{N}_{4} having $n=\sum_{i} n_{i}$ vertices and $m=\sum_{i}(i+1) n_{i}$ edges. It may be disconnected, and its embedding in \mathbb{N}_{g} may not be 2-cell. But Euler's inequality still holds: $n-m+f \geqslant \chi\left(\mathbb{N}_{4}\right)=2-g$. By (c), the number f of connected components of $\mathbb{N}_{\{ } \backslash B^{*}$ is 1 , hence $\sum_{i} i n_{i}=m-n \leqslant g-2+f=g-1$.

A vertex set $U \subseteq V(G)$ of a Π-embedded graph G is a vertex-blockage if every Π -one-sided cycle of G contains a vertex in U. Similarly, a set $U^{*} \subseteq V\left(G^{*}\right)$ of Π-faces is a face-blockuge if every one-sided cycle in the dual graph G^{*} contains a vertex in U^{*}.

It is easy to see that U^{*} is a face-blockage if and only if every one-sided closed curve which does not contain vertices of G intersects a face in U^{*}.

Lemma 3.2. Suppose that G is Π-embedded in \mathbb{N}_{4} and that $B \subseteq E(M)$ is an edgeblockage in M that is minimal (with respect to inclusion). Let

$$
\begin{equation*}
U=V\left(\Gamma\left(B^{*}\right)\right) \cap V(G) \quad \text { and } \quad U^{*}=V\left(\Gamma\left(B^{*}\right)\right) \cap V\left(G^{*}\right) \tag{6}
\end{equation*}
$$

Then U is a vertex-blockage, U^{*} is a face-blockage in G, and the following inequalities hold:

$$
\begin{align*}
& 2|U| \leqslant|B| \leqslant 2|U|+2 g-2, \tag{7}\\
& 2\left|U^{*}\right| \leqslant|B| \leqslant 2\left|U^{*}\right|+2 g-2, \tag{8}\\
& |U|+\left|U^{*}\right| \leqslant|B| \leqslant|U|+\left|U^{*}\right|+g-1 \tag{9}
\end{align*}
$$

Proof. Let C be a Π-one-sided cycle of G. By Lemma 3.1(b), C intersects $\Gamma\left(B^{*}\right)$. Hence it intersects U. This proves that U is a vertex-blockage. By duality, U^{*} is a face-blockage.

To prove the first inequality of (7), observe that the minimum degree in $\Gamma\left(B^{*}\right)$ is $\geqslant 2$ (by Lemma $3.1(\mathrm{a})$) and that $|B|$ equals the sum of degrees of vertices in U. To verify the second inequality, we shall apply Lemma $3.1(\mathrm{~d})$ and denote by n_{i}^{\prime} the number of vertices in U whose degree in $\Gamma\left(B^{*}\right)$ is $2 i+2$. Then

$$
\begin{aligned}
|B| & =\sum_{u \in l} \operatorname{deg}(u)=2|U|+2 \sum_{i} i n_{i}^{\prime} \\
& \leqslant 2|U|+2 \sum_{i} i n_{i} \leqslant 2|U|+2(y-1) .
\end{aligned}
$$

Similar proofs yield (8) and (9).
Let $\beta=\beta(G, \Pi)$ denote the vertex-hlockage number, i.e. the minimum number of vertices in a vertex-blockage. Similarly, let $\beta^{*}=\beta^{*}(G, \Pi)$ be the face-blockage number (the minimum number of faces in a face-blockage), and $\beta^{\prime}=\beta^{\prime}(G, \Pi)$ the edlye-blockage number (the minimum number of edges in an edge-blockage in M).

Corollary 3.3. Suppose that G is Π-embedded in the nonorientable surface $\mathbb{N}_{!!}$. Then the following inequalities hold:

$$
\begin{align*}
& 2 \beta \leqslant \beta^{\prime} \leqslant 2 \beta+2 g-2, \tag{10}\\
& 2 \beta^{*} \leqslant \beta^{\prime} \leqslant 2 \beta^{*}+2 g-2, \tag{11}\\
& \beta+\beta^{*} \leqslant \beta^{\prime} \leqslant \beta+\beta^{*}+g-1 . \tag{12}
\end{align*}
$$

Proof. Let B be a minimum edge-blockage, i.e. $|B|=\beta^{\prime}$. Then $U=\Gamma\left(B^{*}\right) \cap V(G)$ is a vertex-blockage by Lemma 3.2. This easily implies that $2 \beta \leqslant \beta^{\prime}$.

Suppose now that U is a minimum vertex-blockage in G. If $u \in U$ is a vertex of degree d, split u into d new vertices u_{1}, \ldots, u_{d}, with u_{i} joined only to the i th neighbor of $u(i=1, \ldots, d)$. This operation can be performed on the surface for all vertices in U simultaneously. Since U is a blockage, the resulting graph contains no one-sided cycles. We now start identifying some of the new vertices corresponding to Π consecutive neighbors of u, say u_{i} and u_{i+1}. We perform such identifications on the surface as long as possible so that the resulting graph G^{\prime} contains no one-sided cycles.

Let $B \subseteq E(M)$ be the set of those edges of M that correspond to those Π consecutive pairs u_{i}, u_{i+1} that have not been identified. Since G^{\prime} contains no onesided cycles, B is an edge-blockage. Moreover, since every further identification gives rise to a one-sided cycle, B is a minimal edge-blockage (with respect to inclusion). It is also obvious that $V\left(\Gamma\left(B^{*}\right)\right) \cap V(G) \subseteq U$. By Lemma 3.2 we thus have

$$
\begin{aligned}
|B| & \leqslant 2\left|V\left(\Gamma\left(B^{*}\right)\right) \cap V(G)\right|+2 g-2 \\
& \leqslant 2|U|+2 g-2=2 \beta+2 g-2 .
\end{aligned}
$$

This implies the second inequality in (10).
Relation (11) follows by duality, while (12) is proved analogously.
Corollary 3.4. Let G be a graph that is Π-embedded in \mathbb{N}_{4}. Then

$$
\begin{aligned}
& \mathbf{g}(G) \leqslant \frac{1}{4} \beta^{\prime}(G, \Pi)+\frac{g-1}{2} \\
& \mathbf{g}(G) \leqslant \frac{1}{2} \beta(G, \Pi)+g-1
\end{aligned}
$$

and

$$
\mathbf{g}(G) \leqslant \frac{1}{2} \beta^{*}(G, \Pi)+g-1
$$

Proof. Let B be a minimum edge-blockage. By Lemma 3.1(b), $\Gamma\left(B^{*}\right)$ defines a crossing-free blockage $\Gamma=\left\{\gamma_{1}, \ldots, \gamma_{p}\right\}$. Let s be the number of one-sided curves in Γ. Clearly, $\sum_{i} \operatorname{cr}\left(\gamma_{i}, G\right)=\frac{1}{2}\left|B^{*}\right|=\frac{1}{2}|B|=\frac{1}{2} \beta^{\prime}(G, \Pi)$. By Lemma 3.1(c), it follows that Γ contains at most $\frac{y}{2}$ twosided curves. Consequently, $\operatorname{ord}(\Gamma, G) \leqslant \frac{1}{2}(g-2 p+s)+$ $\left.\frac{1}{2} \sum_{i} \operatorname{cr}\left(\gamma_{i}, G\right)+\frac{1}{2} \right\rvert\,\left\{i \mid \gamma_{i}\right.$ is two sided $\} \left\lvert\, \leqslant \frac{1}{2}(g-2 p+s)+\frac{1}{4} \beta^{\prime}(G, \Pi)+\frac{1}{2}(p-s) \leqslant \frac{1}{4} \beta^{\prime}\right.$ $(G, \Pi)+\frac{\underline{y-1}}{2}$. By Lemma 2.1, $\mathbf{g}(G) \leqslant \operatorname{ord}(\bar{\Gamma}, G)$. This proves the first inequality. The second and the third inequality follow from the first one by (10) and (11), respectively.

4. Unstable faces and blockages

Let Π_{0} be an embedding of a graph G. Suppose that there is a facial walk F in which some vertex v appears twice. Then there is a simple closed curve γ in the surface which is contained in the face bounded by F such that $\gamma \cap G=\{v\}$ and γ intersects F in two distinct appearances of v in F. If γ is contractible and its interior contains a vertex or an edge of G, then we delete the vertices and edges of G in the interior of γ. This operation is called an elementary reduction of type I.

Suppose now that there are facial walks F and F^{\prime} such that there exist distinct vertices $v, v^{\prime} \in V(F) \cap V\left(F^{\prime}\right)$. Then there is a simple closed curve γ in the surface which is composed of two segments α, β joining v and v^{\prime} in the faces bounded by F and F^{\prime}, respectively. If γ is contractible and its interior contains at least two edges of G, then we replace all edges and vertices in its interior by a single edge joining v and v^{\prime}. Such an operation is called an elementary reduction of type II.
The embedded graph G is essentially 3-connected if no elementary reductions of type I or II are possible. See also [5]. An obvious property of elementary reductions is the following:

Lemma 4.1. Let Π be an embedding of a graph G. If the Π^{\prime}-embedded graph G^{\prime} is obtained from G by a sequence of elementary reductions, then $\mathbf{g}\left(G^{\prime}\right)=\mathbf{g}(G)$ and $\beta(G, \Pi)=\beta\left(G^{\prime}, \Pi^{\prime}\right), \beta^{\prime}(G, \Pi)=\beta^{\prime}\left(G^{\prime}, \Pi^{\prime}\right)$, and $\beta^{*}(G, \Pi)=\beta^{*}\left(G^{\prime}, \Pi^{\prime}\right)$.

By Lemma 4.1, we shall be able to restrict ourselves to essentially 3-connected embeddings.
Suppose now that we have two embeddings, Π and Π^{\prime}, of a graph G. Let $F=$ $v_{0} e_{1} v_{1} \ldots v_{k-1} e_{k} v_{01}$ be a Π-facial walk. A subsequence $e_{i} v_{i} e_{i+1}$ (indices modulo k), $i \in\{1, \ldots, k\}$, is called an angle of F. The angle $e_{i} v_{i} e_{i+1}$ is identified with the angle $e_{i+1} v_{i} e_{i}$ obtained by traversing the facial walk F in the reverse direction. The angle $e_{i} v_{i} e_{i+1}$ is $\left(\Pi, \Pi^{\prime}\right)$-unstable if it is not an angle of the embedding Π^{\prime}. If two consecutive angles $e_{i} v_{i} e_{i+1}$ and $e_{i+1} v_{i+1} e_{i+2}$ of the facial walk F are $\left(\Pi, \Pi \Pi^{\prime}\right)$-stable but $e_{i} v_{i} e_{i+1} v_{i+1} e_{i+2}$ is not a subwalk of a Π^{\prime}-facial walk, then the angles $e_{i} v_{i} e_{i+1}$ and $e_{i+1} v_{i+1} e_{i+2}$ are said to be weakly $\left(\Pi, \Pi^{\prime}\right)$-unstable.
Suppose that $W=\ldots e_{1} v e_{2} \ldots$ and $W^{\prime}=\ldots e_{3} v e_{4} \ldots$ are walks in a Π^{\prime}-embedded graph G. If the edges e_{1}, \ldots, e_{4} are distinct and their Π^{\prime}-clockwise order around v is $e_{1} e_{3} e_{2} e_{4}$ or $e_{1} e_{4} e_{2} e_{3}$, then we say that W and $W^{\prime} \Pi^{\prime}$-cross at v. Similarly we define Π^{\prime}-crossing of two walks at a common edge e. Two walks are Π^{\prime}-crossing if they Π^{\prime} cross at some vertex or at some edge.

Lemma 4.2. Let Π and Π^{\prime} be embeddings of a graph G.
(a) If evf is a $\left(\Pi, \Pi^{\prime}\right)$-unstable angle of a Π-facial walk F, then there is a Π-facial walk F^{\prime} with an angle $e^{\prime} v f^{\prime}$ such that F and $F^{\prime} \Pi^{\prime}$-cross each other at v.
(b) Suppose that dve and euf are weakly $\left(\Pi, \Pi^{\prime}\right)$-unstable angles of a Π-facial walk F. Let $F^{\prime}=\ldots d^{\prime} v e u f^{\prime} \ldots$ be the second Π-facial walk containing the edge e. Then F
and $F^{\prime} \Pi^{\prime}$-cross each other at e. Moreover, either one of the angles d^{\prime} ve or euf ${ }^{\prime}$ is $\left(\Pi, \Pi^{\prime}\right)$-unstable, or these two angles of F^{\prime} are weakly $\left(\Pi, \Pi^{\prime}\right)$-unstable.

Proof. To prove (a), consider the local Π^{\prime}-clockwise ordering $e, e_{1}, \ldots, e_{s}, f, f_{1}, \ldots, f_{t}$ of edges around v. Since e and f are not Π^{\prime}-consecutive, we have $s \geqslant 1$ and $t \geqslant 1$. It is easy to see that there are Π-consecutive edges e^{\prime}, f^{\prime} such that $e^{\prime}=e_{i}$ for some $i(1 \leqslant i \leqslant s)$, and $f^{\prime}=f_{j}$ for some $j(1 \leqslant j \leqslant t)$, or vice versa. This implies (a).

Claim (b) is obvious and we leave the details for the reader.
A collection of cycles C_{1}, \ldots, C_{k} is called a collection of bouquets if there exist vertices x_{1}, \ldots, x_{p} such that every cycle $C_{i}(1 \leqslant i \leqslant k)$ contains precisely one of these vertices and such that for any two distinct cycles $C_{i}, C_{j}(1 \leqslant i<j \leqslant k)$, the intersection $C_{i} \cap C_{j}$ is either empty, one of the vertices x_{1}, \ldots, x_{p}, or an edge incident to one of these vertices.

Part (a) of the following lemma is proved in [4], while part (b) is easy to see (cf., e.g., [6]).

Lemma 4.3. Let G be a graph embedded in a surface of Euler yenus y, and let C_{1}, \ldots, C_{k} be a collection of bouquets of cycles of G.
(a) If C_{1}, \ldots, C_{k} are noncontractible and pairwise nonhomotopic then $k \leqslant 3 \mathrm{~g}$.
(b) If no subset of C_{1}, \ldots, C_{k} separates the surface then $k \leqslant!$.

The proof of the next lemma is essentially contained in [6].
Lemma 4.4. Let G be a Π^{\prime}-embedded graph and let $\left\{\left(C_{i}, C_{i}^{\prime}\right) \mid i=1, \ldots, k\right\}$ be a collection of pairs of closed walks of G with the following properties:
(a) C_{1}, \ldots, C_{k} are distinct cycles of G and no two of them are Π^{\prime}-crossing.
(b) If $1 \leqslant i<j \leqslant k$ then C_{i} does not Π^{\prime}-cross with C_{j}^{\prime}.
(c) For $i=1, \ldots, k, C_{i} \cap C_{i}^{\prime}$ is either a vertex or an edge.
(d) For $i=1, \ldots, k, C_{i}$ and C_{i}^{\prime} are Π^{\prime}-crossing at their intersection.

Then the genus $\mathbf{g}\left(G, \Pi^{\prime}\right)$ of Π^{\prime} is at least k.
Lemma 4.5. Let $B_{C} \subseteq E(M)$ be the set of the edges of the medial graph $M(G, \Pi)$ which correspond to the $\left(\Pi, \Pi^{\prime}\right)$-unstable and to the weakly $\left(\Pi, \Pi^{\prime}\right)$-unstable angles. If Π^{\prime} is an orientable embedding, then B_{U} is an edge-blockage for Π.

Proof. Let C be a one-sided cycle in M. An open (normal) neighborhood of C is homeomorphic to the Möbius band. If $E(C) \cap B_{l}=\emptyset$, then it is easy to see that the same neighborhood would be a neighborhood of C in the embedding Π^{\prime}. Since Π^{\prime} is orientable, we conclude that $E(C) \cap B_{U} \neq \emptyset$.

Suppose that the set $\{1,2, \ldots, 2 p\}$ is partitioned into pairs $A_{i}=\left\{a_{i}, b_{i}\right\}$, where $a_{i}<b_{i}, i=1, \ldots, p$. Suppose that $1 \leqslant i \leqslant p$ and $1 \leqslant j \leqslant p$ and that $b_{i} \geqslant a_{j}$ and $b_{i} \geqslant a_{i}$. Then the pair A_{i}, A_{j} is called a canonical pair. An integer $l \in\{1,2, \ldots, 2 p\}$ is covered by this canonical pair if either
(a) $i=j$ and $a_{i} \leqslant l \leqslant b_{i}$, or
(b) $i \neq j$ and l is either between a_{i} and a_{j} or between b_{i} and b_{j} (or both).

Lemma 4.6. Under the assumptions given above, there is a set of at least $\lceil\sqrt{p / 20}\rceil$ canonical pairs such that every $l \in\{1,2, \ldots, 2 p\}$ is covered by at most one of these pairs.

Proof. The proof is by induction on p. The proof is obvious for $p \leqslant 20$ and easy for $21 \leqslant p \leqslant 80$ (where we need only two canonical pairs).

Suppose now that $p \geqslant 81$. Let $q=\lfloor p / 2\rfloor$. Let us first consider the case when at least $\lceil p / 3\rceil$ pairs A_{i} satisfy $a_{i} \leqslant 2 q$ and $b_{i}>2 q$. Let Z be the set of all such pairs. Define a partial order \preccurlyeq on Z by $A_{i} \preccurlyeq A_{j}$ if $a_{i} \leqslant a_{j}$ and $b_{i} \leqslant b_{j}$. By the Dilworth Theorem, this partial order either contains a chain or an antichain of cardinality $z=\lceil\sqrt{|Z|}\rceil \geqslant\lceil\sqrt{p / 3}\rceil$. If $A_{i_{1}}, \ldots, A_{i_{z}}$ is a chain or an antichain, where $a_{i_{1}}<a_{i_{2}}<\cdots<a_{i_{i}}$, then consecutive pairs in this order are canonical pairs that cover pairwise disjoint subsets of $\{1, \ldots, 2 p\}$. This gives rise to at least $\lfloor=/ 2\rfloor$ canonical pairs. Since $p \geqslant 81,\lfloor z / 2\rfloor \geqslant \frac{1}{2} \sqrt{p / 3}-\frac{1}{2} \geqslant \sqrt{p / 20}$. This completes the proof in this case.

Suppose now that there are less than $\lceil p / 3\rceil$ such pairs. The remaining subset of at least $\lceil 2 p / 3\rceil$ pairs A_{i} gives rise to two subsets containing p_{1} and p_{2} pairs, respectively, such that the pairs in the first set are contained in $\{1, \ldots, 2 q\}$, and the pairs from the second set are contained in $\{2 q+1, \ldots, 2 p\}$. Note that $p_{1}+p_{2} \geqslant\lceil 2 p / 3\rceil$ and that $p_{1} \leqslant\lfloor p / 2\rfloor$ and $p_{2} \leqslant\lceil p / 2\rceil$. In fact, we may assume that $p_{1}, p_{2} \leqslant p / 2$. (If $p_{2}>p / 2$, then we take $q=\lceil p / 2\rceil$ and repeat the above proof.)

By the induction hypothesis, these sets of pairs contain at least $\rho=\left\lceil\sqrt{p_{1} / 20}\right\rceil+$ $\left\lceil\sqrt{p_{2} / 20}\right\rceil$ canonical pairs that cover disjoint sets. The above conditions on p_{1}, p_{2} imply that $\rho \geqslant \sqrt{(p / 2) / 20}+\sqrt{(p / 6) / 20}>\sqrt{p / 20}$. This completes the proof.

Theorem 4.7. Let G be a graph that is Π-embedded in the nonorientable surface \mathbb{N}_{4}. Then

$$
\begin{equation*}
\frac{1}{2} \beta^{*}(G, \Pi)-(64 g)^{2} \leqslant \mathbf{g}(G) \leqslant \frac{1}{2} \beta^{*}(G, \Pi)+g-1 . \tag{13}
\end{equation*}
$$

Proof. The second inequality in (13) holds by Corollary 3.4. To prove the first one, it suffices to verify that the bound $\mathbf{g}(G) \geqslant \frac{1}{2}|\cdot \overline{\mathcal{H}}|-\left(64(y)^{2}\right.$ holds for some face-blockage \mathscr{F} (not necessarily a minimum one). By Lemma 4.1 , we may assume that the Π embedded graph G is essentially 3 -connected.

Let Π^{\prime} be an orientable embedding of G with genus $\mathbf{g}(G)$. Let $B_{U} \subseteq E(M)$ be the set of those edges of the medial graph $M(G, \Pi)$ which correspond to the $\left(\Pi, \Pi^{\prime}\right)$ unstable and to the weakly $\left(\Pi, \Pi^{\prime}\right)$-unstable angles. By Lemma 4.5, the set B_{C} is an edge-blockage.

If a vertex v appears more than once on a facial walk F, then we say that the angles of F at the appearances of v are 1 -singular. If there are distinct facial walks F, F^{\prime} such that there exist distinct vertices $v, v^{\prime} \in V(F) \cap V\left(F^{\prime}\right)$ which are not consecutive on (at least) one of these facial walks, then we say that the angles of F and of F^{\prime} at v and v^{\prime} are 2-singular. For $i=1,2$, let $B_{i} \subseteq E(M)$ be the set of the edges which correspond to the i-singular angles. Since G is essentially 3 -connected, the edges in B_{i}^{*} correspond to the edges in noncontractible cycles of length $2 i$ in the vertex-face graph Γ.

Let B be an edge-blockage contained in $B_{l} \cup B_{1} \cup B_{2}$ of minimum cardinality. Let $\Lambda=\Gamma\left(B^{*}\right)$ be the subgraph of Γ generated by the edges dual to B.

Consider the connected components of Λ which are cycles. On each of these cycles, select a vertex, and let A_{0} be the set of all selected vertices. By Lemma 3.1(c), no subset of these cycles separates the surface and hence, by Lemma $4.3(\mathrm{~b}),\left|A_{0}\right| \leqslant g$.

Denote by A_{3} the set of vertices of Λ containing A_{0} and all vertices of degree >2 in Λ. Let A_{4} be the set of all vertices of Λ whose distance in Λ from A_{3} is 1 or 2 . By (5) we have

$$
\left|A_{3} \cup A_{4}\right| \leqslant 5\left|A_{0}\right|+\sum_{i \geqslant 1}(1+2 \cdot(2 i+2)) n_{i} \leqslant 5 g+9 \sum_{i \geqslant 1} \operatorname{in}_{i} \leqslant 14 g-9 .
$$

Similar arguments as used above imply that the graph $\Lambda-\left(A_{3} \cup A_{4}\right)$ is the union of $r \leqslant 3 g-2$ disjoint paths P_{1}, \ldots, P_{r}. Choose arbitrarily an orientation of each of the paths P_{1}, \ldots, P_{r}. If C is a Π-facial walk corresponding to a vertex of $P_{i}(1 \leqslant i \leqslant r)$, let $v_{C} \in V(G)$ be the vertex of G that follows C in Λ in the chosen direction of P_{i}. If the edge of Λ joining C and v_{C} belongs to B_{L}^{*}, then Lemma 4.2 implies that there is a Π-facial walk C^{\prime} such that C and $C^{\prime} \Pi^{\prime}$-cross at v_{C} or Π^{\prime}-cross at a common edge incident with $v_{C^{\prime}}$. We say that C^{\prime} is a mate of C. If the edge joining C and v_{C} is in B_{2}^{*}, then we let the mate C^{\prime} of C be a face such that C and C^{\prime} intersect at c^{\prime} c and at another vertex that is not adjacent with v_{C}.

Let A_{1} be the set of vertices of Λ which correspond to Π-facial walks that are not cycles of G. For $x \in A_{1}$, let F be the corresponding facial walk, and let $v \in V(F)$ be a vertex of G that appears twice in F. Since G is essentially 3-connected, v and F determine a noncontractible cycle of length 2 in Γ. (Possibly, the edges of that cycle are not contained in 1.) Choose one such 2-cycle for every $x \in A_{1}$, and let $C_{1}, \ldots, C_{k}\left(k=\left|A_{1}\right|\right)$ be the resulting collection of cycles of Γ. Clearly, C_{1}, \ldots, C_{k} form a bouquet collection in Γ. If $k>9 g$, then Lemma 4.3(a) implies that four of the cycles are homotopic to each other, say $Q_{1}, Q_{2}, Q_{3}, Q_{4}$. These cycles of length 2 in Γ may intersect but their vertices corresponding to faces of G are distinct. We may assume that C_{1} and C_{4} bound a cylinder (or a disk) that contains C_{2} and C_{3}. Now, we add to B^{*} the edges of Q_{1} and Q_{4}. This gives rise to a new edge-blockage contained in $B_{U} \cup B_{1} \cup B_{2}$ whose cardinality is $\leqslant|B|+4$. Since Q_{2} and Q_{3} are contained in the cylinder (disk) bounded by Q_{1} and Q_{4}, we may remove the edges of B^{*} incident with the vertices of A_{1} that are on Q_{2} and Q_{3} and also remove the edges
of Q_{4} and still have a blockage $B^{\prime} \subset B^{*} \cup E\left(C_{1}\right)$. Clearly, $\left|B^{\prime}\right|<\left|B^{*}\right|$, a contradiction. Consequently, $\left|A_{1}\right| \leqslant 9 \mathrm{~g}$.

Let A_{2} be the set of vertices of P_{1}, \ldots, P_{r} that are not in A_{1} and correspond to Π facial cycles which intersect their mate in more than just a vertex or an edge. Let C be such facial cycle, and let C^{\prime} be its mate. Since G is essentially 3-connected, there is a noncontractible 4 -cycle Q in Γ whose vertices are C, C^{\prime}, v_{C} and another vertex $y \in V\left(C \cap C^{\prime}\right)$. Let Z be the set of all such 4 -cycles of Γ. For $Q \in Z$, we denote its vertices by $C(Q), C^{\prime}(Q), v_{C}(Q)$, and $y(Q)$.

It is a simple exercise to prove that there is a subset $Z_{1} \subseteq Z$ of cardinality $\geqslant \frac{1}{9}\left|A_{2}\right|$ such that for any $Q_{1}, Q_{2} \in Z_{1}, v_{C}\left(Q_{1}\right) \neq y\left(Q_{2}\right)$ and $C\left(Q_{1}\right) \neq C^{\prime}\left(Q_{2}\right)$. (Hint: Consider the directed graph on all v_{C} and y-vertices, with an edge from $v_{C}(Q)$ to $y(Q)$ for each $Q \in Z$, and observe that the outdegree of this digraph is at most 1.) Clearly, $V\left(Q_{1}\right) \cap V\left(Q_{2}\right) \subseteq\left\{C^{\prime}\left(Q_{1}\right), y\left(Q_{1}\right)\right\}$. If Q_{1} and Q_{2} intersect in two vertices, then we may assume that their intersection is the edge $C^{\prime}\left(Q_{1}\right) y\left(Q_{1}\right)=C^{\prime}\left(Q_{2}\right) y\left(Q_{2}\right)$.

Let $z=\sqrt{\left|Z_{1}\right|}$. If there is a vertex y such that $y=y(Q)$ for at least z members of Z_{1}, then those 4-cycles in Z_{1} that contain y form a collection of bouquets of cardinality at least z. Otherwise, there is a subset of Z_{1} of cardinality $\geqslant z$ such that no two cycles in this subset have their y-vertex in common. Again, this subset forms a collection of bouquets. If $z>9 g$, then four of the cycles in that collection of bouquets are homotopic, and a proof similar to the above proof of the fact that $\left|A_{1}\right| \leqslant 9 g$ yields a contradiction to the minimality of B. This shows that $z \leqslant 9 g$ and, therefore, $\left|A_{2}\right| \leqslant 729 g^{2}$.

Let F_{1}, \ldots, F_{N} be the facial cycles corresponding to the vertices on P_{1}, \ldots, P_{r} which are not in $A_{1} \cup A_{2}$, enumerated in the order of the paths P_{1}, \ldots, P_{r} and with respect to their selected orientation. Let $F_{1}^{\prime}, \ldots, F_{5}^{\prime}$ be their mates. Since the facial cycles corresponding to the vertices in Λ form a face-blockage, we have

$$
\begin{align*}
N & \geqslant \beta^{*}(G, \Pi)-\left|A_{1} \cup A_{2}\right|-\left|A_{3} \cup A_{4}\right| \\
& \geqslant \beta^{*}(G, \Pi)-(27 y+1)^{2} . \tag{14}
\end{align*}
$$

If $i, j \in\{1, \ldots, N\}$ and $j-i \geqslant 2$, then we say that $\{i, j\}$ is a bad pair if either F_{i} and F_{j}, or F_{i} and F_{j}^{\prime} intersect and Π^{\prime}-cross each other. Let M be a set of bad pairs of maximum cardinality such that no two members of M have an element in common. Our goal is to prove that $|M|=O\left(g^{2}\right)$.

Each bad pair $\{i, j\}$ determines a path $Q_{i j}$ joining two vertices of Λ : If F_{i} and $F_{j} \Pi^{\prime}$-cross at vertex x, then $Q_{i j}$ is the path of length 2 connecting F_{i} and F_{j} through x. If F_{i} and $F_{j}^{\prime} \Pi^{\prime}$-cross at vertex x, then $Q_{i j}$ is the path of length 3 connecting F_{i} and a vertex in $F_{j} \cap F_{j}^{\prime}$ through x. Clearly, $E\left(Q_{i j}\right) \subseteq B_{C}^{*}$.

If $\{i, j\}$ is a bad pair and F_{i} and F_{j} are in the same path $P_{u}(1 \leqslant a \leqslant r)$, then $Q_{i j}$ and the edges of P_{a} determine a cycle $R_{i j}$ which is called the canonical cycle of the bad pair $\{i, j\}$. Observe that

$$
\begin{equation*}
\left|E\left(Q_{i j}\right)\right|<\frac{1}{2}\left|E\left(R_{i j}\right)\right| \tag{15}
\end{equation*}
$$

Suppose that $\{i, j\}$ and $\left\{i^{\prime}, j^{\prime}\right\} \quad\left(i<j, i^{\prime}<j^{\prime}\right)$ are disjoint bad pairs such that $i^{\prime}<j$ and $i<j^{\prime}$. If F_{j} and $F_{j^{\prime}}$ are in the same path $P_{u}(1 \leqslant a \leqslant r)$ and F_{i} and $F_{i^{\prime}}$ are in the same path $P_{h}(1 \leqslant b \leqslant a)$, then there is a cycle $R_{i j i i^{\prime} i^{\prime}}$ in Λ that is composed of $Q_{i j}, Q_{i i^{\prime} j^{\prime}}$ and two paths $P_{i i^{\prime}} \subseteq P_{u}$ and $P_{i i^{\prime}} \subseteq P_{h}$, joining the "upper" and "lower" ends of $Q_{i j}$ and $Q_{i i^{\prime} j^{\prime}}$, respectively. The cycle $R_{i j, i^{\prime} i^{\prime}}$ is called the canonical cycle of bad pairs $\{i, j\}$ and $\left\{i^{\prime}, j^{\prime}\right\}$. We shall need an analogy of (15). That is not automatic, but if $\left|j-j^{\prime}\right| \geqslant 4$, then the length of the segment $P_{j i j^{\prime}}$ is at least 7 . Consequently,

$$
\begin{equation*}
\left|E\left(Q_{i j}\right)\right|+\left|E\left(Q_{i^{\prime} j^{\prime}}\right)\right|<\left|E\left(P_{i j^{\prime}}\right)\right| . \tag{16}
\end{equation*}
$$

We can view $P_{1} \cup \cdots \cup P_{r}$ as being a single path by adding auxiliary edges joining the end of P_{l} with the beginning of $P_{l+1}, l=1, \ldots, r-1$. Then we can define canonical cycles for bad pairs (or pairs of bad pairs) also when the ends of $Q_{i j}$ (and $Q_{i j^{\prime}}$) are not in the same path(s) P_{u} (and P_{h}). The canonical cycles that use the auxiliary edges are called fake canonical cycles; the others are said to be genuine.

In order to meet the condition $\left|j-j^{\prime}\right| \geqslant 4$ needed for (16), we order the bad pairs in M according to their larger members j, and let M_{1} be the subset consisting of every fourth bad pair in this order.

Lemma 4.6 shows that there is a set of at least $\left\lceil\sqrt{\left|M_{\mid}\right| / 20}\right\rceil$ canonical cycles (using only bad pairs in M_{1}) whose intersections with $P_{1} \cup \cdots \cup P_{r}$ are pairwise disjoint. Since $r \leqslant 3 g-2$, at most $3 g-3$ of these canonical cycles are fake. Let $R_{1}, \ldots, R_{s}\left(s \geqslant\left\lceil\sqrt{\left|M_{1}\right| / 20}\right\rceil-3 g+3\right)$ be the subset of genuine canonical cycles. These canonical cycles are disjoint except that they may have a vertex in common if the mate F_{j}^{\prime} of F_{j} is the same as the mate F_{l}^{\prime} of F_{l}, and F_{j}, F_{l} are in distinct canonical cycles. Therefore, R_{1}, \ldots, R_{y} form a collection of bouquets.

If one of these cycles, say $R_{l}=R_{i j}$ (or $R_{l}=R_{i j, i^{\prime} i^{\prime}}$) would be contractible, then the replacement in B^{*} of $E\left(R_{l}\right) \cap P_{a}$ (or $E\left(P_{i j^{\prime}}\right)$) with $Q_{i j}$ (or $Q_{i j} \cup Q_{i i^{\prime} j^{\prime}}$) would give rise to another blockage. By (15) (or (16)), this blockage would contradict minimality of B. Therefore, R_{l} is noncontractible. Similar conclusion holds if two of these genuine canonical cycles are homotopic (in which case we can add to B^{*} the missing edges of one of them and remove the edges of the second one). Lemma 4.3 implies that $s \leqslant 3 g$. Consequently, $|M| \leqslant 4\left|M_{1}\right| \leqslant 3240 g^{2}$.

Let A be the set of facial cycles F_{l} such that l is contained in some bad pair in M. As proved above, $|A| \leqslant 2 \cdot 3240 g^{2}$. Let C_{1}, \ldots, C_{t} be a maximum subsequence of F_{1}, \ldots, F_{N} such that none of C_{i} is in A and such that, for $i=1, \ldots, t-1$, if $C_{i}=F_{j}$, then $C_{i+1} \neq F_{i+1}$. Clearly,

$$
\begin{equation*}
t \geqslant \frac{1}{2}(N-|A|) \geqslant \frac{1}{2} N-3240 g^{2} . \tag{17}
\end{equation*}
$$

For $j=1, \ldots, t$, let C_{j}^{\prime} be the mate of C_{j}. Let us consider the collection of pairs

$$
\mathscr{C}=\left\{\left(C_{j}, C_{j}^{\prime}\right) \mid j=1, \ldots, t\right\} .
$$

We claim that \mathscr{C} satisfies conditions (a)-(d) of Lemma 4.4. No facial walk C_{i} is in $A_{1} \cup A_{2}$. Therefore, every C_{i} is a cycle and (c) holds. Since the cycles in A do not participate in the sequence C_{1}, \ldots, C_{t}, the pairs in \mathscr{C} satisfy (a) and (b). Clearly, (d) is also satisfied.

By Lemma 4.4 and inequalities (14) and (17),

$$
\mathbf{g}(G)=\mathbf{g}\left(G, \Pi^{\prime}\right) \geqslant|\Varangle| \geqslant \frac{1}{2} N-3240 g^{2} \geqslant \frac{1}{2} \beta^{*}(G, \Pi)-(64 \xi)^{2} .
$$

The proof is complete.
The "error" term $(64 g)^{2}$ in (13) is not best possible. There are examples which show that such term of order $\Omega(g)$ is necessary, and we conjecture that (13) can be improved to

$$
\mathbf{g}(G) \geqslant \frac{1}{2} \beta^{*}(G, \Pi)-O(g) .
$$

Corollary 4.8. Let G be a graph embedded in \mathbb{N}_{4}, and let r be the minimum order of a crossing-free blockage. Then

$$
r-(64 g)^{2}-g+1 \leqslant \mathbf{g}(G) \leqslant r
$$

Proof. The second inequality is obvious by Lemma 2.1. To verify the first one, let B be a minimum edge-blockage, and let Γ be a crossing-free blockage corresponding to $\Gamma\left(B^{*}\right)$ by Lemma $3.1(\mathrm{~b})$. The proof of Corollary 3.4 actually gives the following inequality:

$$
\begin{equation*}
r \leqslant \operatorname{ord}(\Gamma, G) \leqslant \frac{1}{2} \beta^{*}(G, \Pi)+g-1 . \tag{18}
\end{equation*}
$$

By Theorem 4.7, $\mathbf{g}(G) \geqslant \frac{1}{2} \beta^{*}(G, \Pi)-(64 g)^{2}$. This inequality combined with (18) completes the proof.

Finally, let us observe that Corollary 3.3 implies that $\beta(G, \Pi)$ and $\beta^{*}(G, \Pi)$ cannot differ too much. Therefore, $\mathbf{g}(G)$ is also approximately equal to $\beta(G, \Pi)$, up to a term which depends on y only.

It is not clear if there is an efficient algorithm for finding a minimum (crossingfree) blockage or its approximation for a graph embedded in \mathbb{N}_{g}. For every fixed g, this task is solvable in polynomial time since there is only a bounded number of possibilities for homotopies of curves in an optimum crossing-free blockage. However, this approach seems complicated, and we refrain from describing further details. The case when $g=2$ is described in [9].

References

[1] L. Auslander, I.A. Brown, J.W.T. Youngs, The imbedding of graphs in manifolds, J. Math. Mech. 12 (1963) 629) 634.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North-Holland, New York, 1981.
[3] J.R. Fiedler, J.P. Huneke, R.B. Richter, N. Robertson, Computing the orientable genus of projective graphs, J. Graph Theory 20 (1995) 297308.
[4] A. Malnič, B. Mohar, Generating locally cyclic triangulations of surfaces, J. Combin. Theory Ser, B 56 (1992) 147-164.
[5] B. Mohar, Combinatorial local planarity and the width of graph embeddings, Canad. J. Math. 44 (1992) 1272-1288.
[6] B. Mohar, Uniqueness and minimality of large face-width embeddings of graphs, Combinatorica 15 (1995) 541-556.
[7] B. Mohar, On the orientable genus of graphs with bounded nonorientable genus, Discrete Math. 182 (1998) 245-253.
[8] B. Mohar, C. Thomassen, Graphs on Surfaces, Johns Hopkins University Press, Baltimore, MD, 2001.
[9] N. Robertson, R. Thomas, On the orientable genus of graphs embedded in the Klein bottle, J. Graph Theory 15 (1991) 407-419.
[10] C. Thomassen, The graph genus problem is NP-complete, J. Algorithms 10 (1989) $568-576$.

[^0]: E-muil cuddresses: bojanmohar(a uni-lj.si (B. Mohar), lexwewinl (A. Schrijver).
 'Supported in part by the Ministry of Science and Technology of Slovenia, Research Project J1-(05020101 .

