219 research outputs found

    Gene regulatory mechanisms underlying the intestinal innate immune response

    Get PDF
    In the mammalian gastrointestinal tract, distinct types of cells, including epithelial cells and macrophages, collaborate to eliminate ingested pathogens while striving to preserve the commensal microbiota. The underlying innate immune response is driven by significant gene expression changes in each cell, and recent work has provided novel insights into the gene regulatory mechanisms that mediate such transcriptional changes. These mechanisms differ from those underlying the canonical cellular differentiation model in which a sequential deposition of DNA methylation and histone modification marks progressively restricts the chromatin landscape. Instead, inflammatory macrophages and intestinal epithelial cells appear to largely rely on transcription factors that explore an accessible chromatin landscape to generate dynamic stimulus-specific and spatial-specific physiological responses

    Rhythmic expression of the cycle gene in a hematophagous insect vector

    Get PDF
    BACKGROUND: A large number of organisms have internal circadian clocks that enable them to adapt to the cyclic changes of the external environment. In the model organism Drosophila melanogaster, feedback loops of transcription and translation are believed to be crucial for the maintenance of the central pacemaker. In this mechanism the cycle (or bmal1) gene, which is constitutively expressed, plays a critical role activating the expression of genes that will later inhibit their own activity, thereby closing the loop. Unlike Drosophila, the molecular clock of insect vectors is poorly understood, despite the importance of circadian behavior in the dynamic of disease transmission. RESULTS: Here we describe the sequence, genomic organization and circadian expression of cycle in the crepuscular/nocturnal hematophagous sandfly Lutzomyia longipalpis, the main vector of visceral leishmaniasis in the Americas. Deduced amino acid sequence revealed that sandfly cycle has a C-terminal transactivation domain highly conserved among eukaryotes but absent in D. melanogaster. Moreover, an alternative form of the transcript was also identified. Interestingly, while cycle expression in Drosophila and other Diptera is constitutive, in sandflies it is rhythmic in males and female heads but constitutive in the female body. Blood-feeding, which causes down-regulation of period and timeless in this species, does not affect cycle expression. CONCLUSION: Sequence and expression analysis of cycle in L. longipalpis show interesting differences compared to Drosophila suggesting that hematophagous vector species might present interesting new models to study the molecular control of insect circadian clocks

    Genome-Wide Ultrabithorax Binding Analysis Reveals Highly Targeted Genomic Loci at Developmental Regulators and a Potential Connection to Polycomb-Mediated Regulation

    Get PDF
    Hox homeodomain transcription factors are key regulators of animal development. They specify the identity of segments along the anterior-posterior body axis in metazoans by controlling the expression of diverse downstream targets, including transcription factors and signaling pathway components. The Drosophila melanogaster Hox factor Ultrabithorax (Ubx) directs the development of thoracic and abdominal segments and appendages, and loss of Ubx function can lead for example to the transformation of third thoracic segment appendages (e.g. halters) into second thoracic segment appendages (e.g. wings), resulting in a characteristic four-wing phenotype. Here we present a Drosophila melanogaster strain with a V5-epitope tagged Ubx allele, which we employed to obtain a high quality genome-wide map of Ubx binding sites using ChIP-seq. We confirm the sensitivity of the V5 ChIP-seq by recovering 7/8 of well-studied Ubx-dependent cis-regulatory regions. Moreover, we show that Ubx binding is predictive of enhancer activity as suggested by comparison with a genome-scale resource of in vivo tested enhancer candidates. We observed densely clustered Ubx binding sites at 12 extended genomic loci that included ANTP-C, BX-C, Polycomb complex genes, and other regulators and the clustered binding sites were frequently active enhancers. Furthermore, Ubx binding was detected at known Polycomb response elements (PREs) and was associated with significant enrichments of Pc and Pho ChIP signals in contrast to binding sites of other developmental TFs. Together, our results show that Ubx targets developmental regulators via strongly clustered binding sites and allow us to hypothesize that regulation by Ubx might involve Polycomb group proteins to maintain specific regulatory states in cooperative or mutually exclusive fashion, an attractive model that combines two groups of proteins with prominent gene regulatory roles during animal development

    Síntese de poliestireno sulfonado para aplicaçÔes no tratamento de ågua produzido a partir de copos e bandejas descartadas de poliestireno

    Full text link
    In the present paper, the use of poly(styrene sulfonate) (PSS), produced from discarded polystyrene materials through heterogeneous and homogeneous processes, was investigated. The use of PSS for water treatment, using a kaolin suspension as wastewater model, reduced water turbidity for all the employed materials when compared to the blank analysis, without PSS. The most efficient polyelectrolyte was PSS cups obtained by homogeneous route. The same behavior was observed for real system. The homogeneous PSS cups showed a balance between a moderate molecular weight and high anionic character that improved flocks formation and water removal turbidity

    Research priorities for next-generation breeding of tropical forages in Brazil.

    Get PDF
    ABSTRACT: Pasture is the main food source for more than 200 million cattle heads in Brazil. Although Brazilian forage breeding programs have successfully released well-adapted, high-yielding cultivars over the years, the use of genomic tools in these programs is currently limited. These tools are required to tackle the main challenges for tropical forage breeding in Brazil. In this context, this notes lists the main research priorities raised at the workshop ?Breeding Forages in the Genomic Era?, which are necessary to accelerate the use of genomic tools for next-generation breeding of tropical forages and allow breeders to increase genetic gains. Additionally, an online discussion forum (hosted at http://www.cnpgl.embrapa.br/genfor) has been launched to strengthen collaborations among research groups. The research priorities and more synergistic collaborations will assist researchers and decision-makers in delivering a sustainable increase in production of animal products, especially beef and milk, which are required to feed a rising world population

    Research priorities for next-generation breeding of tropical forages in Brazil.

    Get PDF
    ABSTRACT: Pasture is the main food source for more than 200 million cattle heads in Brazil. Although Brazilian forage breeding programs have successfully released well-adapted, high-yielding cultivars over the years, the use of genomic tools in these programs is currently limited. These tools are required to tackle the main challenges for tropical forage breeding in Brazil. In this context, this notes lists the main research priorities raised at the workshop “Breeding Forages in the Genomic Era”, which are necessary to accelerate the use of genomic tools for next-generation breeding of tropical forages and allow breeders to increase genetic gains. Additionally, an online discussion forum (hosted at http://www.cnpgl.embrapa.br/genfor) has been launched to strengthen collaborations among research groups. The research priorities and more synergistic collaborations will assist researchers and decision-makers in delivering a sustainable increase in production of animal products, especially beef and milk, which are required to feed a rising world population
    • 

    corecore