280 research outputs found

    Automated workflows for modelling chemical fate, kinetics and toxicity.

    Get PDF
    Automation is universal in today's society, from operating equipment such as machinery, in factory processes, to self-parking automobile systems. While these examples show the efficiency and effectiveness of automated mechanical processes, automated procedures that support the chemical risk assessment process are still in their infancy. Future human safety assessments will rely increasingly on the use of automated models, such as physiologically based kinetic (PBK) and dynamic models and the virtual cell based assay (VCBA). These biologically-based models will be coupled with chemistry-based prediction models that also automate the generation of key input parameters such as physicochemical properties. The development of automated software tools is an important step in harmonising and expediting the chemical safety assessment process. In this study, we illustrate how the KNIME Analytics Platform can be used to provide a user-friendly graphical interface for these biokinetic models, such as PBK models and VCBA, which simulates the fate of chemicals in vivo within the body and in vitro test systems respectively

    Pro-inflammatory pattern of IgG1 Fc glycosylation in multiple sclerosis cerebrospinal fluid.

    Get PDF
    Background Immunoglobulin G (IgG) effector functions are regulated by the composition of glycans attached to a conserved N-glycosylation site in the Fc part. Intrathecal production of IgG, especially IgG1, is a hallmark of multiple sclerosis (MS), but nothing is known about IgG Fc glycosylation in MS and in cerebrospinal fluid (CSF) in general. Methods We applied mass spectrometry of tryptic Fc glycopeptides to analyze IgG Fc glycosylation (sialylation, galactosylation, fucosylation, and bisecting N-acetylglucosamine (GlcNAc)) in 48 paired CSF and serum samples from adult patients with MS or a first demyelinating event highly suggestive of MS (designated as MS cases), and from healthy volunteers and patients with other non-inflammatory diseases (control group). p values were adjusted for multiple testing. Results Our experiments revealed four main results. First, IgG1 glycosylation patterns were different in CSF vs. serum, in the MS group and even in control donors without intrathecal IgG synthesis. Second, in MS patients vs. controls, IgG1 glycosylation patterns were altered in CSF, but not in serum. Specifically, in CSF from the MS group, bisecting GlcNAc were elevated, and afucosylation and galactosylation were reduced. Elevated bisecting GlcNAc and reduced galactosylation are known to enhance IgG effector functions. Third, hypothesis-free regression analysis revealed that alterations of afucosylation and bisecting GlcNAc in CSF from MS cases peaked 2–3 months after the last relapse. Fourth, CSF IgG1 glycosylation correlated with the degree of intrathecal IgG synthesis and CSF cell count. Conclusions The CNS compartment as well as the inflammatory milieu in MS affect IgG1 Fc glycosylation. In MS, the CSF IgG1 glycosylation has features that enhance Fc effector functions

    Features of MOG required for recognition by patients with MOG antibody-associated disorders

    Get PDF
    Antibodies to myelin oligodendrocyte glycoprotein (MOG-Abs) define a distinct disease entity. Here we aimed to understand essential structural features of MOG required for recognition by autoantibodies from patients. We produced the N-terminal part of MOG in a conformationally correct form; this domain was insufficient to identify patients with MOG-Abs by ELISA even after site-directed binding. This was neither due to a lack of lipid embedding nor to a missing putative epitope at the C-terminus, which we confirmed to be an intracellular domain. When MOG was displayed on transfected cells, patients with MOG-Abs recognized full-length MOG much better than its N-terminal part with the first hydrophobic domain (P < 0.0001). Even antibodies affinity-purified with the extracellular part of MOG recognized full-length MOG better than the extracellular part of MOG after transfection. The second hydrophobic domain of MOG enhanced the recognition of the extracellular part of MOG by antibodies from patients as seen with truncated variants of MOG. We confirmed the pivotal role of the second hydrophobic domain by fusing the intracellular part of MOG from the evolutionary distant opossum to the human extracellular part; the chimeric construct restored the antibody binding completely. Further, we found that in contrast to 8-18C5, MOG-Abs from patients bound preferentially as F(ab')(2) rather than Fab. It was previously found that bivalent binding of human IgG1, the prominent isotype of MOG-Abs, requires that its target antigen is displayed at a distance of 13-16 nm. We found that, upon transfection, molecules of MOG did not interact so closely to induce a Forster resonance energy transfer signal, indicating that they are more than 6 nm apart. We propose that the intracellular part of MOG holds the monomers apart at a suitable distance for bivalent binding; this could explain why a cell-based assay is needed to identify MOG-Abs. Our finding that MOG-Abs from most patients require bivalent binding has implications for understanding the pathogenesis of MOG-Ab associated disorders. Since bivalently bound antibodies have been reported to only poorly bind C1q, we speculate that the pathogenicity of MOG-Abs is mostly mediated by other mechanisms than complement activation. Therefore, therapeutic inhibition of complement activation should be less efficient in MOG-Ab associated disorders than in patients with antibodies to aquaporin-4

    Avance en procedimientos de la explotación de información para la identificación de datos faltantes, con ruido e inconsistentes

    Get PDF
    La información se ha convertido en uno de los activos más importantes para las empresas y es necesario garantizar la seguridad, calidad y legalidad de dicha información. A partir de este hecho, la auditoría de los sistemas tiene un papel central en la prevención de riesgos relacionados con el gobierno de la tecnología de la información. En general, el desarrollo y la aplicación técnicas de auditoría asistidas por computadora (CAATs) es aún incipiente, en particular la minería de datos se aplica de manera embrionaria y asistemática a tareas relacionadas con la auditoría de sistemas. En la actualidad no se encuentran procedimientos formales especialmente diseñados para aplicar técnicas de explotación de información en la auditoría de sistemas y a la búsqueda de datos con ruido, inconsistentes y faltantes Este trabajo busca establecer procesos formales de explotación de información para la detección de datos anómalos en bases de datos. Esto será muy útil para la tarea de los auditores de sistemas.Eje: Bases de datos y minería de datosRed de Universidades con Carreras en Informática (RedUNCI

    HiTSEE KNIME: a visualization tool for hit selection and analysis in high-throughput screening experiments for the KNIME platform

    Get PDF
    We present HiTSEE (High-Throughput Screening Exploration Environment), a visualization tool for the analysis of large chemical screens used to examine biochemical processes. The tool supports the investigation of structure-activity relationships (SAR analysis) and, through a flexible interaction mechanism, the navigation of large chemical spaces. Our approach is based on the projection of one or a few molecules of interest and the expansion around their neighborhood and allows for the exploration of large chemical libraries without the need to create an all encompassing overview of the whole library. We describe the requirements we collected during our collaboration with biologists and chemists, the design rationale behind the tool, and two case studies on different datasets. The described integration (HiTSEE KNIME) into the KNIME platform allows additional flexibility in adopting our approach to a wide range of different biochemical problems and enables other research groups to use HiTSEE

    Cerebrospinal Fluid B Cells Correlate with Early Brain Inflammation in Multiple Sclerosis

    Get PDF
    Background: There is accumulating evidence from immunological, pathological and therapeutic studies that B cells are key components in the pathophysiology of multiple sclerosis (MS). Methodology/Principal Findings: In this prospective study we have for the first time investigated the differences in the inflammatory response between relapsing and progressive MS by comparing cerebrospinal fluid (CSF) cell profiles from patients at the onset of the disease (clinically isolated syndrome, CIS), relapsing-remitting (RR) and chronic progressive (CP) MS by flow cytometry. As controls we have used patients with other neurological diseases. We have found a statistically significant accumulation of CSF mature B cells (CD19+CD1382) and plasma blasts (CD19+CD138+) in CIS and RRMS. Both B cell populations were, however, not significantly increased in CPMS. Further, this accumulation of B cells correlated with acute brain inflammation measured by magnetic resonance imaging and with inflammatory CSF parameters such as the number of CSF leukocytes, intrathecal immunoglobulin M and G synthesis and intrathecal production of matri
    corecore