159 research outputs found

    EPR identification of defects responsible for thermoluminescence in Cu-doped lithium tetraborate (Li2B4O7) crystals

    Get PDF
    Electron paramagnetic resonance (EPR) is used to identify the electron and hole traps responsible for thermoluminescence (TL) peaks occurring near 100 and 200 â—¦C in copper-doped lithium tetraborate (Li2B4O7) crystals. As-grown crystals have Cu+ and Cu2+ ions substituting for lithium and have Cu+ ions at interstitial sites. All of the substitutional Cu2+ ions in the as-grown crystals have an adjacent lithium vacancy and give rise to a distinct EPR spectrum. Exposure to ionizing radiation at room temperature produces a second and different Cu2+ EPR spectrum when a hole is trapped by substitutional Cu+ ions that have no nearby defects. These two Cu2+ trapped-hole centers are referred to as Cu2+-VLi and Cu2+active, respectively. Also during the irradiation, two trapped-electron centers in the form of interstitial Cu0 atoms are produced when interstitial Cu+ ions trap electrons. They are observed with EPR and are labeled Cu0A and Cu0B. When an irradiated crystal is warmed from 25 to 150 â—¦C, the Cu2+active centers have a partial decay step that correlates with the TL peak near 100 â—¦C. The concentrations of Cu0A and Cu0B centers, however, increase as the crystal is heated through this range. As the crystal is futher warmed between 150 and 250 â—¦C, the EPR signals from the Cu2+active hole centers and Cu0A and Cu0B electron centers decay simultaneously. This decay step correlates with the intense TL peak near 200 â—¦C

    Deep Learning and Image data-based surface cracks recognition of laser nitrided Titanium alloy

    Get PDF
    Laser nitriding, a high-precision surface modification process, enhances the hardness, wear resistance and corrosion resistance of the materials. However, laser nitriding process is prone to appearance of cracks when the process is performed at high laser energy levels. Traditional techniques to detect the cracks are time consuming, costly and lack standardization. Thus, this research aims to put forth deep learning-based crack recognition for the laser nitriding of Ti–6Al–4V alloy. The process of laser nitriding has been performed by varying duty cycles, and other process parameters. The laser nitrided sample has then been processed through optical 3D surface measurements (Alicona Infinite Focus G5), creating high resolution images. The images were then pre-processed which included 2D conversion, patchification, image augmentation and subsequent removal of anomalies. After preprocessing, the investigation focused on employing robust binary classification method based on CNN models and its variants, including ResNet-50, VGG-19, VGG-16, GoogLeNet (Inception V3), and DenseNet-121, to recognize surface cracks. The performance of these models has been optimized by fine tuning different hyper parameters and it is found that CNN base model along with models having less trainable parameters like VGG-19, VGG-16 exhibit better performance with accuracy of more than 98% to recognize cracks. Through the achieved results, it is found that VGG-19 is the most preferable model for this crack recognition problem to effectively recognize the surface cracks on laser nitrided Ti–6Al–4V material, owing to its best accuracy and lesser parameters compared to complex models like ResNet-50 and Inception-V3

    DESIGNING EFFICIENT LOCALIZED SURFACE PLASMON RESONANCE-BASED SENSING PLATFORMS: OPTIMIZATION OF SENSOR RESPONSE BY CON-TROLLING THE EDGE LENGTH OF GOLD NANOPRISMS

    Get PDF
    poster abstractOver the last few years, the unique localized surface plasmon resonance (LSPR) properties of plasmonic nanostructures have been used to design la-bel-free biosensors. In this research, we demonstrate that it is the difference in edge length of gold nanoprisms that significantly influences their bulk re-fractive index sensitivity and local sensing efficiency. Nanoprisms with edge lengths in the range of 28-51 nm were synthesized by the chemical-reduction method and sensing platforms were fabricated by chemisorptions of these nanoprisms onto silanized glass substrates. The plasmonic nanosensors prepared from 28 nm edge length nanoprisms exhibited the largest sensitivity to change in bulk refractive index with a value of 647 nm/RIU. The refractive index sensitivity decreased with increasing edge length, with nanoprisms of 51 nm edge lengths displaying a sensitivity of 384 nm/RIU. In contrast, we found that the biosensing efficiency of sensing platforms modified with biotin increased with increasing edge length, and the sensing platforms fabricated from 51 nm edge length nanoprisms displaying the highest local sensing efficiency. The lowest concentration of streptavidin that could be measured reliably was 1.0 pM and the limit of detection for the sensing platforms fabricated from 51 nm edge length nanoprisms was 0.5 pM, which is much lower than found with gold bipyramids, nanostars, and nanorods

    Evaluation of Eu:LiCAF for Neutron Detection Utilizing SiPMs and Portable Electronics

    Get PDF
    With the increasing cost and decreasing availability of 3He, there have been many efforts to find alternative neutron detection materials. Lithium calcium aluminum fluoride (LiCAF) enriched to 95% 6Li doped with europium was evaluated here as a replacement material for 3He. Wafers 0.5 cm thick, consisting of LiCAF crystals in a rubberized matrix, were embedded with wavelength shifting fibers (WSF) and mated to silicon photo-multipliers (SiPMs) to measure the photon response in a flux of neutrons from a DD neutron generator. Excellent discrimination was realized between neutrons and gammas, and both pulse-height discrimination and pulse-shape analysis were explored. A Figure of Merit (FoM) of 1.03 was achieved. By applying pulse-shape analysis, a simple neutron count output was generated by utilizing a low-pass filter to suppress fast pulses from the SiPM output and subsequently applying a threshold to the remaining signal. Custom electronics were built to bias the SiPMs, then amplify, filter, discriminate, and digitize the LiCAF/WSF scintillation photons, resulting in a digital pulse that can easily be counted with any microcontroller or field programmable gate array. A significant advantage of LiCAF is that it can be fabricated into any shape/size (when embedded in a rubberized matrix), and the light output and transparency is sufficient to allow for thicker scintillators which enable detection of both thermal and epithermal neutrons. This work demonstrated that Eu:LiCAF is capable of discriminating gammas from neutrons and is a potential replacement material for 3He, especially for nuclear security applications and neutron spectroscopy

    EPR identification of defects responsible for thermoluminescence in Cu-doped lithium tetraborate (Li2B4O7) crystals

    Get PDF
    Electron paramagnetic resonance (EPR) is used to identify the electron and hole traps responsible for thermoluminescence (TL) peaks occurring near 100 and 200 â—¦C in copper-doped lithium tetraborate (Li2B4O7) crystals. As-grown crystals have Cu+ and Cu2+ ions substituting for lithium and have Cu+ ions at interstitial sites. All of the substitutional Cu2+ ions in the as-grown crystals have an adjacent lithium vacancy and give rise to a distinct EPR spectrum. Exposure to ionizing radiation at room temperature produces a second and different Cu2+ EPR spectrum when a hole is trapped by substitutional Cu+ ions that have no nearby defects. These two Cu2+ trapped-hole centers are referred to as Cu2+-VLi and Cu2+active, respectively. Also during the irradiation, two trapped-electron centers in the form of interstitial Cu0 atoms are produced when interstitial Cu+ ions trap electrons. They are observed with EPR and are labeled Cu0A and Cu0B. When an irradiated crystal is warmed from 25 to 150 â—¦C, the Cu2+active centers have a partial decay step that correlates with the TL peak near 100 â—¦C. The concentrations of Cu0A and Cu0B centers, however, increase as the crystal is heated through this range. As the crystal is futher warmed between 150 and 250 â—¦C, the EPR signals from the Cu2+active hole centers and Cu0A and Cu0B electron centers decay simultaneously. This decay step correlates with the intense TL peak near 200 â—¦C

    The effective surface Debye temperature of Yb:GaN

    Get PDF
    The effective Debye temperature of ytterbium and gallium in Yb:GaN thin films has been obtained using X-ray photoemission spectroscopy. The vibrational motion normal to the surface results in a dimunition of photoemission intensities from which we have estimated the effective Debye temperatures of 221±30 K and 308±30 K for Yb and Ga, respectively. The difference between the measured values for Yb and Ga suggests that the Debye temperatures are influenced by the local environment. The smaller effective surface Debye temperature for Yb correlates to a soft, strained surface, possibly due to an increased Yb―N bond length as compared to the Ga―N bond length

    Schottky barrier formation at the Au to rare earth doped GaN thin film interface

    Get PDF
    The Schottky barriers formed at the interface between gold and various rare earth doped GaN thin films (RE = Yb, Er, Gd) were investigated in situ using synchrotron photoemission spectroscopy. The resultant Schottky barrier heights were measured as 1.68 ± 0.1 eV (Yb:GaN), 1.64 ± 0.1 eV (Er:GaN), and 1.33 ± 0.1 eV (Gd:GaN). We find compelling evidence that thin layers of gold do not wet and uniformly cover the GaN surface, even with rare earth doping of the GaN. Furthermore, the trend of the Schottky barrier heights follows the trend of the rare earth metal work function

    New transitions and feeding of the J\u3csup\u3eπ\u3c/sup\u3e=(8\u3csup\u3e+\u3c/sup\u3e) isomer in \u3csup\u3e186\u3c/sup\u3eRe

    Get PDF
    The spallation neutron source at the Los Alamos Neutron Science Center Weapons Neutron Research facility was used to populate excited states in 186Re via (n,2nγ) reactions on an enriched 187Re target. Gamma rays were detected with the GErmanium Array for Neutron Induced Excitations spectrometer, a Compton-suppressed array of 18 HPGe detectors. Incident neutron energies were determined by the time-of-flight technique and used to obtain γ-ray excitation functions for the purpose of identifying γ rays by reaction channel. Analysis of the singles γ-ray spectrum gated on the neutron energy range 10≤En≤25MeV resulted in five transitions and one level added to the 186Re level scheme. The additions include the placement of three γ rays at 266.7, 381.2, and 647.7 keV which have been identified as feeding the 2.0×105yr, Jπ=(8+) isomer and yield an improved value of 148.2(5)keV for the isomer energy. These transitions may have astrophysical implications related to the use of the Re-Os cosmochronometer. Abstract © APS

    Dual Role of Sb Ions as Electron Traps and Hole Traps in Photorefractive Sn2P2S6 Crystals

    Get PDF
    Doping photorefractive single crystals of Sn2P2S6 with antimony introduces both electron and hole traps. In as-grown crystals, Sb3+ (5s2 ) ions replace Sn2+ ions. These Sb3+ ions are either isolated (with no nearby perturbing defects) or they have a chargecompensating Sn2+ vacancy at a nearest-neighbor Sn site. When illuminated with 633 nm laser light, isolated Sb3+ ions trap electrons and become Sb2+ (5s2 5p1 ) ions. In contrast, Sb3+ ions with an adjacent Sn vacancy trap holes during illumination. The hole is primarily localized on the (P2S6) 4− anionic unit next to the Sb3+ ion and Sn2+ vacancy. These trapped electrons and holes are thermally stable below ∼200 K, and they are observed with electron paramagnetic resonance (EPR) at temperatures below 150 K. Resolved hyperfine interactions with 31P, 121Sb, and 123Sb nuclei are used to establish the defect models

    The unoccupied electronic structure characterization of hydrothermally grown ThO\u3csub\u3e2\u3c/sub\u3e single crystals

    Get PDF
    Single crystals of thorium dioxide ThO2, grown by the hydrothermal growth technique, have been investigated by ultraviolet photoemission spectroscopy (UPS), inverse photoemission spectroscopy (IPES), and L3, M3, M4, and M5 X-ray absorption near edge spectroscopy (XANES). The experimental band gap for large single crystals has been determined to be 6 eV to 7 eV, from UPS and IPES, in line with expectations. The combined UPS and IPES, place the Fermi level near the conduction band minimum, making these crystals n-type, with extensive band tailing, suggesting an optical gap in the region of 4.8 eV for excitations from occupied to unoccupied edge states. Hybridization between the Th 6d/5f bands with O 2p is strongly implicated
    • …
    corecore