388 research outputs found

    Defining the wheat microbiome: towards microbiome-facilitated crop production

    Get PDF
    Wheat is one of the worldā€™s most important crops, but its production relies heavily on agrochemical inputs which are notoriously harmful to the environment. It is well known that a multitude of microbes interact with eukaryotic organisms, including plants, and the sum of microbes and their functions associated with a given host is termed the microbiome. Plant-microbe interactions can be beneficial, neutral or harmful to the host plant. Over the last decade, with the development of next generation DNA sequencing technology, our understanding of the plant microbiome structure has dramatically increased. Considering that defining the wheat microbiome is key to leverage crop production in a sustainable way, here we describe how different factors drive microbiome assembly in wheat, including crop management, edaphic-environmental conditions and host selection. In addition, we highlight the benefits to take a multidisciplinary approach to define and explore the wheat core microbiome to generate solutions based on microbial (synthetic) communities or single inoculants. Advances in plant microbiome research will facilitate the development of microbial strategies to guarantee a sustainable intensification of crop production

    Longā€term trends in migrating Brassicogethes aeneus in the UK

    Get PDF
    BACKGROUND The pollen beetle (Brassicogethes aeneus) causes significant yield loss in oilseed rape (Brassica napus). Predicting population changes remains a scientific challenge, especially since its phenology and abundance varies dramatically over space and time. We used generalized additive models to investigate the long-term trends in pollen beetle annual, seasonal and monthly counts from Rothamsted 12.2 m suction-traps. We hypothesised that the beetle's abundance is positively related to the area of oilseed rape at a national and regional level. We used random forest models to investigate the inter-generational relationship within years. RESULTS Although B. aeneus annual counts and area of oilseed rape grown in the UK both increased by 162% and 113%, respectively, over the time period, they were not significantly related. The size of the immigrating pollen beetle population (up to June 1st) can be explained both by the size of the population in the previous summer and prevailing winter temperatures, indicating a positive feedback mechanism. CONCLUSION Currently, pollen beetle numbers continue to increase in the UK, meaning that control issues may persist, however the relationship between counts in spring, during the susceptible phase of the crop, and counts in the previous summer indicates that it may be possible to forecast the counts of the spring migration of B. aeneus a few months in advance using suction-trap samples, which could aid decisions on control options

    Integrated pest management strategies for cabbage stem flea beetle (Psylliodes chrysocephala) in oilseed rape

    Get PDF
    Oilseed rape (OSR) is the second largest source of vegetable oil globally and the most important biofuel feedstock in the European Union (EU) but production of this important crop is threatened by a small insect; Psylliodes chrysocepaha ā€“ the cabbage stem flea beetle (CSFB). The EU ban on use of neonicotinoid seed treatments and resistance of CSFB to pyrethroid insecticides have left farmers with limited control options resulting in drastic reductions in production. Integrated pest management (IPM) may offer a solution. We review the lifecycle of CSFB and the current options available, or in the research pipeline, for the eight IPM principles of the EU Sustainable Use of Pesticides Directive (Directive-2009/128/EC). A full IPM strategy for CSFB barely exists. Although there are a range of preventative measures these require scientific validation; critically, resistant/tolerant OSR cultivars are not yet available. Existing monitoring methods are time consuming and there are no commercial models to enable decision support based on predictions migration timing or population size. Available thresholds are not based on physiological tolerances of the plant making it hard to adapt them to changing market prices for the crop and costs of control. Non-synthetic alternatives tested and registered for use against CSFB are lacking, making resistance management impossible. CSFB control is therefore dependent upon conservation biocontrol. Natural enemies of CSFB are present, but quantification of their effects is needed and habitat management strategies to exploit their potential. Although some EU countries have local initiatives to reduce insecticide use and encourage use of ā€˜greenerā€™ alternatives, there is no formal process for ranking these and little information available to help farmers make choices. We summarise the main knowledge gaps and future research needed to improve measures for CSFB control and to facilitate development of a full IPM strategy for this pest -and sustainable oilseeds production

    Plankton reach new heights in effort to avoid predators

    Get PDF
    Author Posting. Ā© The Author(s), 2012. This is the author's version of the work. It is posted here by permission of The Royal Society for personal use, not for redistribution. The definitive version was published in Proceedings of the Royal Society B: Biological Sciences 279 (2012): 2786-2792, doi:10.1098/rspb.2012.0163.The marine environment associated with the air-water interface (neuston) provides an important food source to pelagic organisms where subsurface prey is limited. However, studies on predator-prey interactions within this environment are lacking. Copepods are known to produce strong escape jumps in response to predators but must contend with a low Reynolds number environment where viscous forces limit escape distance. All previous work on copepods interaction with predators has focused on a liquid environment. Here, we describe a novel anti-predator behavior in two neustonic copepod species where individuals frequently exit the water surface and travel many times their own body length through air to avoid predators. Using both field recordings with natural predators and high speed laboratory recordings we obtain detailed kinematics of this behavior, and estimate energetic cost associated with this behavior. We demonstrate that despite losing up to 88% of their initial kinetic energy, copepods which break the water surface travel significantly further than escapes underwater and successfully exit the perceptive field of the predator. This behavior provides an effective defense mechanism against subsurface feeding visual predators and the results provide insight into trophic interactions within the neustonic environment.This work was supported by grants from the National Science Foundation, USA to EJB (NSF OCE-0452159), to HJ (NSF OCE-1129496)

    The evolution of ecological specialization across the range of a broadly distributed marine species

    Get PDF
    Ecological specialization is an important engine of evolutionary change and adaptive radiation, but empirical evidence of local adaptation in marine environments is rare, a pattern that has been attributed to the high dispersal ability of marine taxa and limited geographic barriers to gene flow. The broad-nosed pipefish, Syngnathus typhle, is one of the most broadly distributed syngnathid species and shows pronounced variation in cranial morphology across its range, a factor that may contribute to its success in colonizing new environments. We quantified variation in cranial morphology across the species range using geometric morphometrics, and tested for evidence of trophic specialization by comparing individual-level dietary composition with the community of prey available at each site. Although the diets of juvenile pipefish from each site were qualitatively similar, ontogenetic shifts in dietary composition resulted in adult populations with distinctive diets consistent with their divergent cranial morphology. Morphological differences found in nature are maintained under common garden conditions, indicating that trophic specialization in S. typhle is a heritable trait subject to selection. Our data highlight the potential for ecological specialization in response to spatially variable selection pressures in broadly distributed marine species.Swiss Academy of SciencesSwiss National Science FoundationSwiss National Science Foundation (SNSF)European CommissionUniversity of ZurichBrooklyn CollegeCity University of New Yorkinfo:eu-repo/semantics/acceptedVersio

    Inorganic Chemical Fertilizer Application to Wheat Reduces the Abundance of Putative Plant Growth-Promoting Rhizobacteria

    Get PDF
    The profound negative effect of inorganic chemical fertilizer application on rhizobacterial diversity has been well documented using 16S rRNA gene amplicon sequencing and predictive metagenomics. We aimed to measure the function and relative abundance of readily culturable putative plant growth-promoting rhizobacterial (PGPR) isolates from wheat root soil samples under contrasting inorganic fertilization regimes. We hypothesized that putative PGPR abundance will be reduced in fertilized relative to unfertilized samples. Triticum aestivum cv. Cadenza seeds were sown in a nutrient depleted agricultural soil in pots treated with and without OsmocoteāƒR fertilizer containing nitrogen-phosphorous-potassium (NPK). Rhizosphere and rhizoplane samples were collected at flowering stage (10 weeks) and analyzed by culture-independent (CI) amplicon sequence variant (ASV) analysis of rhizobacterial DNA as well as culture- dependent (CD) techniques. Rhizosphere and rhizoplane derived microbiota culture collections were tested for plant growth-promoting traits using functional bioassays. In general, fertilizer addition decreased the proportion of nutrient-solubilizing bacteria (nitrate, phosphate, potassium, iron, and zinc) isolated from rhizocompartments in wheat whereas salt tolerant bacteria were not affected. A ā€œPGPRā€ database was created from isolate 16S rRNA gene sequences against which total amplified 16S rRNA soil DNA was searched, identifying 1.52% of total community ASVs as culturable PGPR isolates. Bioassays identified a higher proportion of PGPR in non-fertilized samples [rhizosphere (49%) and rhizoplane (91%)] compared to fertilized samples [rhizosphere (21%) and rhizoplane (19%)] which constituted approximately 1.95 and 1.25% in non-fertilized and fertilized total community DNA, respectively. The analyses of 16S rRNA genes and deduced functional profiles provide an in-depth understanding of the responses of bacterial communities to fertilizer; our study suggests that rhizobacteria that potentially benefit plants by mobilizing insoluble nutrients in soil are reduced by chemical fertilizer addition. This knowledge will benefit the development of more targeted biofertilization strategies

    Effect of Plant Growth Promoting Bacteria on the Growth of Wheat Seedlings Subjected to Phosphate Starvation

    Get PDF
    Certain phosphorous solubilizing (PSB) and phosphorous mineralizing (PMB) bacteria may improve plant growth by improving nutrient availability. The aim of this work was to evaluate the effect of inoculation with two Bacillus spp. strains, 12A and 25A, on wheat seedlings growth. To this aim, a durum and a bread wheat genotype were grown under controlled conditions in a low P compost medium to evaluate: (i) the effect of the bacterial isolates on plant growth and root system architecture; (ii) the expression of two key genes indicative of the P-starvation response and phosphate (Pi) uptake, TaIPS1 and TaPHT1.6-B1. The results showed that 12A Bacillus sp. significantly increased root length, surface area and biomass. Furthermore, an enhanced shoot dry weight and P content were observed. This might be explained by the capacity of strain 12A to produce indole-3-acetic acid (IAA) in addition to P mineralizing and P solubilizing capability. No effect on plant growth was observed for 25A strain. The semi-quantitative gene expression analysis showed an overall lower expression of TaIPS1 in the inoculated plants and highest expression of TaPHT1.6-B1 in 12A inoculated plants. This suggests that Pi-responsive genes might be useful molecular indicators for the effectiveness of PSB and PM
    • ā€¦
    corecore