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ABSTRACT 7 

The marine environment associated with the air-water interface (neuston) provides an 8 
important food source to pelagic organisms where subsurface prey is limited. However, 9 
studies on predator-prey interactions within this environment are lacking. Copepods are 10 
known to produce strong escape jumps in response to predators but must contend with a 11 
low Reynolds number environment where viscous forces limit escape distance. All previous 12 
work on copepods interaction with predators has focused on a liquid environment. Here, 13 
we describe a novel anti-predator behavior in two neustonic copepod species where 14 
individuals frequently exit the water surface and travel many times their own body length 15 
through air to avoid predators. Using both field recordings with natural predators and 16 
high speed laboratory recordings we obtain detailed kinematics of this behavior, and 17 
estimate energetic cost associated with this behavior. We demonstrate that despite losing 18 
up to 88% of their initial kinetic energy, copepods which break the water surface travel 19 
significantly further than escapes underwater and successfully exit the perceptive field of 20 
the predator. This behavior provides an effective defense mechanism against subsurface 21 
feeding visual predators and the results provide insight into trophic interactions within the 22 
neustonic environment.  23 

 24 

1. INTRODUCION  25 

Copepods are one of the most abundant metazoans on the planet [1-2] and are known to 26 

be important prey for fish [3-6] and other marine organisms [7-8]. The copepod’s role in marine 27 

food webs makes their behavioral adaptations to predation important to understand. The 28 

neustonic environment consists of the upper few millimeters of water associated with the air-29 

water interface. This environment is often characterized by elevated biomass and numbers of 30 

organisms relative to the water beneath [9] and provides food to higher tropic levels such as fish 31 

[10]. Pontellid copepods are a ubiquitous group often found in neustonic environments and 32 
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adults are known to reside during daylight hours in the brightly lit surface water of coastal 33 

oceans [11]. 34 

Many planktonic organisms residing in the photic zone have nearly transparent tissues 35 

which are assumed to reduce conspicuousness to visual predators [12]. However, species which 36 

live in close proximity to the water surface (neuston) are often highly pigmented, including 37 

copepods [13]. Pigmentation in copepods has been demonstrated to reduce the effects of 38 

damaging UV radiation [14-15] and may play a similar role in Pontellids. These copepods are 39 

also large in comparison with many other copepod taxa [16]. This large size combined with 40 

pigmentation makes these copepods more visually conspicuous and thus, should be preferred by 41 

visual fish predators [17-18].  42 

One of the mechanisms by which copepods are known to avoid fish predators is through 43 

the use of powerful escape jumps [19-22]. These escape jumps are present throughout 44 

development [23-24] and can generate speeds up to 800 mm s-1 and accelerations of up to 200 m 45 

s-2 [20]. The interaction of copepods and their natural predators has been investigated in a liquid 46 

medium [22, 25-26]. However aerial escapes have never been investigated for a planktonic 47 

organism but may have significant ecological and evolutionary implications for the wide variety 48 

of species that live and feed within the surface layer of the ocean.  49 

Reports of copepods breaking through the water surface occurred as early as the late 19th 50 

century [27]. The observer hypothesized that the leaps into the air and subsequent re-entry into 51 

the water functioned as a mechanism to assist with molting, by jarring them loose from their old 52 

exoskeleton. A later report of aerial copepod jumps proposed an anti-predator mechanism [28], 53 

but the function of this behavior remained hypothetical. 54 



Using field video recordings and high speed video in the laboratory, we demonstrate that 55 

aerial jumps provide an effective escape mechanism in response to visual fish predators. 56 

Kinematic analysis of this little known behavior reveals a significant energetic cost of breaking 57 

the water surface, yet this aerial escape behavior still provides a net energy savings relative to an 58 

escape performed solely underwater. These findings provide insight into how this group of 59 

animals can be successful in a pelagic environment where they appear conspicuous and easily 60 

targeted by visual predators. 61 

2. MATERIALS AND METHODS 62 

a) Field recordings 63 

Field recordings were made using a hand-held video recorder at 30 frames s-1 (Sony 64 

Handycam CCD-TR3300) above the water surface. Recordings were edited in Adobe Premier 65 

Pro to maximize distinction between copepods and the surrounding water by adjusting both 66 

brightness and contrast. Two-dimensional escape kinematics in response to fish predators were 67 

obtained using ImageJ v1.43 software. Statistical analysis for both laboratory and field 68 

recordings were performed using Sigmaplot 11.0 (Systat Software Inc).  69 

Field recordings of the copepod, Anomalocera ornata interacting with juvenile mullet 70 

(Mugil cephalus) were performed for 15 min at the University of Texas Marine Science Institute 71 

marina and escape responses from 89 individuals were obtained during analysis. The movement 72 

of the camera required to follow individual fish interacting with copepods made simple size and 73 

distance calibrations inappropriate. Instead, we captured and measured 22 of the juvenile M. 74 

cephalus that were in the location of the video recordings and the resulting standard length of 75 

24.2 mm (SD 1.96) was used to scale the video frames during kinematic analysis. This method 76 

does not provide the finest spatial resolution but allows a reasonable approximation of both 77 



distance and velocity. It should be noted that the calculated kinematic values represent minimum 78 

estimates of both velocity and distance since recordings were based solely in an X-Y plane 79 

normal to the camera lens so any Z component of motion was not accounted for. Therefore, 80 

velocity and distance are likely underestimated but this effect is minimal for the laboratory 81 

studies since the narrow (4 cm width) aquarium limited movement in the Z plane. 82 

b) Laboratory recordings 83 

Copepods (Labidocera aestiva) were collected from inshore waters of the Northern Gulf 84 

of Mexico (27° 50’ 19” N 97° 3’ 8” W) using a 0.5 m diameter plankton net (150 µm mesh).  85 

Approximately 50 individuals were placed in a small, narrow rectangular acrylic aquarium 86 

(20cm x 4cm x 20cm) filled to 50% capacity with filtered seawater. A high speed camera, 87 

Redlake MotionMeter® model 1140-0003 equipped with a Nikon Nikkor 55-mm lens was used 88 

to capture the escape behavior. Dark field illumination was provided by infrared light emitting 89 

diodes (peak wavelength 890 nm). The copepod escape jumps were recorded at 250-500 frames 90 

s-1. After 10 recordings, copepods were replaced with 50 new animals to limit the probability of 91 

recording the same animal multiple times.  92 

Two camera positions were utilized during laboratory recordings. In position 1 the 93 

camera was aligned with the aquarium so that the surface of the water was near the bottom of the 94 

field of view in order to capture the entire aerial portion of the escape and 60 escapes were 95 

recorded using this configuration. In position 2 the camera was oriented so that approximately 96 

1/3rd of the field of view was below the surface of the water and 2/3rds were above the water 97 

surface. This allowed determination of the copepod’s speed as it broke the water’s surface, the 98 

contact angle to the surface and the trajectory through air. 24 escapes were recorded with this 99 

configuration. The contact angle was determined at the instant contact was made at the water 100 



surface, while the entire animal remained underwater. Using image analysis software (ImageJ) 101 

we determined the angle using the water surface and the longitudinal central plane of the animal. 102 

Recordings were performed in a darkroom and escape responses from the copepods were elicited 103 

through a photic startle response by a rapid change in light intensity [29]. The subsequent escape 104 

responses resulted in many copepods breaking the water’s surface and traveling variable 105 

distances through the air. Escapes in which more than 50% of the aerial trajectory was out of the 106 

field of view were not used for analysis. In cases where only a smaller portion (less than 50%) of 107 

the escape traveled beyond the field of view, the maximal distance was extrapolated using 108 

Vogel’s model for an object in free fall [30]. This was required for 19 of the 60 escapes used in 109 

our analysis. 110 

c) Data analysis 111 

To compare the kinematic results obtained from both ImageJ v1.43 software and Celltrak 112 

v1.5 motion analysis software, data was log transformed and checked for normality using a 113 

Shapiro-Wilk test. A one-way analysis of variance (ANOVA) was performed for both total 114 

horizontal distance and maximum velocity.  115 

We used the following equation to estimate the net kinetic energy loss (∆K) incurred 116 

from a copepod breaking the water surface: 117 
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where mcopepod is the body mass of the copepod, U0 is the copepod velocity at the moment just 119 

before the copepod starts to break the water surface, and U1 is the copepod velocity at the 120 

moment right after the copepod becomes completely airborne. mcopepod = ρcopepod×Vcopepod, where 121 

ρcopepod is the mass density of the copepod (approximately equal to the mass density of the 122 



seawater, ρseawater), and Vcopepod is the copepod body volume. Vcopepod is calculated as 4/3πη2a3, 123 

where a is half the prosome length, η the copepod aspect ratio, and assuming the shape of a 124 

prolate spheroid with the long axis equal to the prosome length, 2a, and the short axis equal to 125 

η×2a. 126 

Here, we estimate three likely contributions to this energy loss: 127 

(1) The loss due to the water drag can be estimated as: 128 

ee
2
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where Cd is the drag coefficient of the equivalent sphere having the same volume as that of the 130 

copepod body, Se is the cross-sectional area of the equivalent sphere, and de is the diameter of the 131 

equivalent sphere. We estimate this energy loss during breaking the water surface (very short 132 

time scale) as the average between the moment the animal makes contact with the surface (fully 133 

underwater), and moment the animal fully breaks free of the surface (fully in air). Here, we 134 

assume that the drag acting on the copepod when it just starts to break the water surface is 0.5 Cd 135 

ρseawater U0
2 Se, and the drag acting on the copepod when it just leaves the water surface to 136 

become completely airborne is 0.5 Cd ρair U1
2 Se, where ρair is the mass density of air. Because ρair 137 

<< ρseawater, the average drag for this short time interval is approximately 0.25 Cd ρseawater U0
2 Se. 138 

The average drag multiplied by the distance traveled, de, leads to Equation (2). Cd is calculated 139 

based on the Reynolds number Re = U0 de / νseawater, where νseawater is the kinematic viscosity of 140 

the seawater. Although we are not sure about the applicability of the commonly used drag law, 141 

Equation (2) should give upper bound estimation of the energy loss due to the water drag. 142 

(2) The loss due to the increase of the gravitational potential energy of the copepod body 143 

estimated as: 144 



( )αcos   ecopepod2 dgmK =∆        (3) 145 

where g is acceleration due to gravity, and α is the exit angle (figure S1). 146 

(3) The loss due to overcoming the surface tension: 147 

)cos(  copepod3 θσ AK =∆         (4) 148 

where σ (= 0.075 N m-1) is the surface tension for the seawater-air interface, Acopepod is the 149 

surface area of the copepod, and θ is the contact angle between the copepod body and the 150 

seawater surface. Here, we assume that the energy loss is due to the copepod surface condition 151 

changing from interfacing with seawater to interfacing with air, i.e. 152 

( ) copepodseawatercopepodaircopepod3  AK −− −=∆ σσ , where σcopepod-air and σcopepod-seawater are the surface 153 

energies associated with the copepod-air and copepod-seawater interfaces, respectively. Using 154 

Young’s law for the contact angle, i.e. σcopepod-air = σcopepod-seawater + σ cos(θ) [31], we obtain 155 

Equation (4). 156 

3. RESULTS  157 

Field video recordings captured the copepod Anomalocera ornata (prosome length 2.5-158 

3.1 mm) in the presence of small plankton feeding fish (juvenile Mugil cephalus) within inshore 159 

waters of the Northwestern Gulf of Mexico. The escape behavior was stimulated by the approach 160 

of the predatory fish, M. cephalus, (figure 1) and consisted of an airborne leap covering a 161 

horizontal distance of 80 ±30 mm (N= 89), with maximum distances of up to 170 mm observed 162 

(see data supplement for video of this behavior). On average, the copepods travelled over 40 163 

times their own body length and 3.4 times the body length of the fish predator (mean standard 164 

length 24.2mm). The maximum aerial velocity achieved during these escapes was 890 ±200 mm 165 



s-1 and average velocities over the entire escape were 660 ±150 mm s-1 (figure 2a). Only 1 of the 166 

89 observed escapes resulted in multiple attacks by the same fish.  167 

A smaller Pontellid copepod (prosome length 1.8-2.0 mm), Labidocera aestiva, was 168 

stimulated to perform escape jumps in the laboratory using a photic startle response and the 169 

escapes were recorded with a high speed video camera at 250-500 frames s-1(see data supplement 170 

for video of this behavior). This species swam approximately 0-40 mm below the water’s surface 171 

until stimulated to escape. We found that maximum aerial velocity of the copepods after they 172 

broke the water’s surface to be 630 ±150 mm s-1. This was significantly lower (P = <0.001) than 173 

velocities produced by A. ornata and also resulted in significantly lower (P = <0.001) horizontal 174 

escape distances (figure 2a). Labidocera aestiva was able to attain heights over 60 mm above the 175 

water’s surface and up to 76 mm in distance from the exit point in the water. However, the mean 176 

horizontal distance travelled during escapes through air was 16.0 ±14.1 mm. It is interesting to 177 

note that in most cases rotation was imparted on the animal as it broke the surface (see 178 

supplemental video). In some cases the rotation was estimated in excess of 45,000 degrees s-1 179 

(7500 rpm). The underwater portion of the escapes for L. aestiva yielded maximum velocities of 180 

1036 ±121 mm s-1 which is significantly greater (P = <0.001) than maximum velocities observed 181 

after breaking the surface. 182 

The results of a correlation analysis between horizontal escape distance and maximum 183 

aerial velocity for A. ornata exhibited a moderate relationship (R2= 0.36) (figure 2b). The same 184 

analysis performed for L. aestiva exhibited virtually no correlation between horizontal escape 185 

distance and maximum aerial velocity (R2= 0.04) (figure 2c). Notably, swimming pattern and 186 

orientation of the two species relative to the water surface before escape is also different (figure 187 

3). L. aestiva was observed to swim freely below the water surface using an intermittent 188 



(cruising-sinking) swimming pattern. During the cruising phase, the copepod was oriented 189 

randomly to the water surface but during sinking, L. aestiva was consistently observed to orient 190 

with its anterior end towards the water surface.  A. ornata exhibited a cruising swimming pattern 191 

and was consistently oriented with its ventral side facing downwards (away from the surface) 192 

and the dorsal side of the animal at the water surface. 193 

When high speed recordings during the aerial portion of an escape jump of L. aestiva are 194 

compared to a model of biological projectiles [29] the copepod acts as a ballistic object in free-195 

fall (figure 4a).  Using data from both 500 fps and 250 fps observations, we estimate that 58-196 

88% of the kinetic energy at the moment when the copepod starts to break the water surface will 197 

be lost for breaking the water surface (figure 4b). Among the total loss (fit to the data), 61-67% 198 

is due to overcoming the water drag force (i.e. ∆K1), the contribution from increases of 199 

gravitational potential energy (∆K2) is negligible, and the loss due to overcoming the surface 200 

tension (∆K3) is 33-39%. When a similar calculation is made for adult flying fish which are 201 

orders of magnitude larger than Pontellid copepods, yet produce a functionally analogous 202 

behavior, the cost of breaking the surface is < 0.07% of the kinetic energy possessed at the 203 

moment when the fish starts to break the water surface.  204 

4. DISCUSSION 205 

Large scale movement of copepods that reside in the neustonic surface layer of the ocean 206 

is often subject to surface currents. They have been observed to accumulate at oceanic frontal 207 

boundaries [32] where small predatory fish are also more abundant [33]. Thus, successful 208 

predator evasion is essential to the copepod’s survival. However being confined at the surface 209 

limits escape ability and predators have been observed using the water surface to aid in prey 210 

capture [34]. The ability of some Pontellid copepods to break the water surface provides 211 



advantages over escapes which occur solely underwater. First, exiting the perceptive field of a 212 

predator and re-entering at a random location reduces the chance of continued pursuit and the 80 213 

±30 mm horizontal escape distance observed for A. ornata is well beyond the perceptive distance 214 

determined for fish of the similar length to C. mugil [35]. Second, for a copepod to achieve a 215 

similar escape distance solely underwater, it would have to expend ~20 times more mechanical 216 

energy, therefore a significant energetic savings exists by jumping into air.  217 

The underwater velocity is higher than maximum velocities reported for other similarly 218 

sized copepods [20] which facilitate these small organisms breaking the water surface. However, 219 

the mode in which the two species of copepods exit the water is different (figure 3). A. ornata 220 

consistently swims with its dorsal side at the water surface while the anterior end of L. aestiva 221 

was generally directed toward the surface but was observed to swim at many orientations just 222 

below the surface. This may explain why L. aestiva exhibits a lower correlation between 223 

maximum aerial velocity and horizontal distance than A. ornata (figure 2b, c). 224 

Considering a single stroke escape jump that occurs completely underwater, the copepod 225 

achieves its peak velocity approximately at the end of the power stroke of the swimming legs. 226 

During the power stroke, the copepod travels a distance nL, where L is the prosome length and n 227 

~ 1-2 [21]. Upon completion of the power stroke, the copepod rapidly decelerates due to drag 228 

forces but maintains enough inertia to move forward another distance of ~nL until coming to 229 

rest. The present observations show that copepods, via a one-kick jump, can break the surface of 230 

the water (see supplemental video) and peak velocity (U0) is obtained just before breaking the 231 

surface. At the moment when the animal becomes completely airborne it travels at a velocity 232 

(U1), which is significantly smaller than U0. In other words, there is a net kinetic energy loss 233 



(figure 4b). The net kinetic energy loss (∆K) incurred during the copepod Labidocera aestiva 234 

breaking the water surface is 58-88%.  235 

This energy loss, however, is compensated for by increased escape distance. After 236 

becoming airborne, the copepod can travel significantly farther than nL (i.e. the distance it 237 

otherwise travels underwater) because it now experiences the air mass density, which is ~850 238 

times smaller than the mass density of seawater. Therefore, the copepod will experience less drag 239 

resulting in increased distance. There is no propulsive force exerted by the copepod after it 240 

becomes airborne, and the copepod undergoes ballistic motion because of gravity (and the air 241 

drag force) (figure 4a). 242 

Our field observations show that copepods can effectively use aerial escapes as an anti-243 

predator mechanism. By leaving the perceptive environment of the visual fish predators and re-244 

entering the water up to 170 mm (≈60 body lengths) away from the attack site, a copepod can 245 

utilize this effective strategy which appears analogous to that of some larger organisms (e.g. 246 

flying fish). An important difference, however, is that all species known to perform similar types 247 

of behavior are orders of magnitude larger than copepods. This means that copepods must 248 

contend with the reduced inertial forces (lower Reynolds number) and a greater proportion of the 249 

total energy dedicated to break the surface tension of water.   250 

Consider the case of a flying fish. We calculate that flying fish lose <0.07% of their 251 

overall kinetic energy breaking the surface tension compared to 33-39% in the case of the 252 

copepod, despite a greater magnitude of energy loss (due to larger surface area) than copepods. 253 

This is due to the fact that flying fish possess orders of magnitude more kinetic energy upon 254 

contact with the water surface because of much greater mass and underwater speeds of ≈10 m s-1 255 

[36], compared to ≈1 m s-1 in copepods. However, it should be noted that although aerial escapes 256 



in larger, heavier aquatic animals lose almost no kinetic energy from surface tension effects, 257 

horizontal distances in terms of body length (for animals exhibiting ballistic aerial motion) are 258 

much shorter [37]. Thus, what appears to be a disadvantage of small mass (e.g. losing significant 259 

proportion of kinetic energy) can translate into an advantage: once the water surface is broken, 260 

the copepod travels disproportionally farther than larger animals (with ballistic flight paths). The 261 

major reason for this is that the copepod has the ability to generate and maintain a 262 

disproportionally large air-entry velocity (relative to body length) compared to larger animals. A 263 

secondary reason might be that the flying copepod experiences smaller air drag-induced 264 

deceleration than larger animals. Therefore ballistic aerial escape paths can be effective in 265 

pelagic ecosystems when the animal (and predator) is small, but are unlikely to carry a larger 266 

animal out of the perceptive range of their predator. Instead, specialized structures and behavior 267 

such as those observed in flying fish are required to extend horizontal distance above water.  268 

Because escapes are energetically costly [38-40], a copepod’s fitness can be reduced even 269 

without being captured by a predator. It therefore benefits the copepod to balance predation risk 270 

and energy cost by avoiding unnecessary escapes. To avoid pursuit or multiple attacks from a 271 

predator, copepods must travel to a distance outside of the perceptive range of the predator. 272 

During an escape, a copepod travels approximately 1-2 times its prosome length per stroke 273 

(calculated from [21]). For the Pontellid copepods this would result in a distance of 2-6 mm per 274 

stroke. However, even small fish can perceive prey at least 10 mm away [35, 41] thus; multiple 275 

escape jumps are required for a copepod to exit the predator’s perceptive field. Therefore, if an 276 

escape occurs in air rather than water, reduced drag forces can extend escape distance. This can 277 

transport a copepod further from a predator with a single escape jump, than with multiple jumps 278 



in an aqueous environment, resulting in net energy savings. They also return to the water in an 279 

unpredictable location making pursuit from the predators unlikely.  280 

Finally, the Pontellid copepods may have special adaptations to make it easier for them to 281 

jump out of the water: One possible adaptation is that the body surface of those copepod species 282 

that do perform such air-entering jumps is less wettable than other copepods or crustaceans in 283 

general and thus, their surface properties may be essential for their unusual capability of 284 

breaking the water surface. Our kinetic energy budget calculation suggests that if the surface 285 

tension is not altered during the breaking of the surface (i.e. a constant σ = 0.075 N m-1), in order 286 

to maintain a useful level of kinetic energy after breaking the surface the copepod body surface 287 

has to be hydrophobic, i.e. much larger contact angle in the 68-81° range [Fig. 4b; calculated 288 

according to Equation (4)].  Another suspected adaptation may be that the copepods inject 289 

chemicals during breaking of the surface to reduce the surface tension by 3-6 times, and 290 

therefore a useful level of air-entry kinetic energy can still be maintained even when the contact 291 

angle remains similar to published measurements for other crustaceans in the range of below 20° 292 

[42].  Further investigation is required to find out if these adaptations indeed exist. Nevertheless, 293 

unusual morphological structures are known to exist on the dorsal side of Pontellid copepods 294 

[43], which might contribute to making the copepod body surface less wettable. However, these 295 

morphological structures make up only a small part of the animal’s total surface and 296 

alternatively, pores specialized for secretion onto the body surface exist in Pontellids [44]. 297 

Similar pores with currently unknown function may also be involved in secreting substances 298 

presumably to alter surface properties or surface tension of water immediately surrounding the 299 

animal. Regardless of the mechanism, escaping through air appears to be an effective strategy to 300 

not only avoid and survive attacks from predators by temporarily exiting the liquid environment 301 



and exiting the predator’s perceptive field, but also to conserve energy during escapes, providing 302 

a competitive advantage for Pontellid copepods in the neustonic environment. 303 

 304 
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Figure legends: 310 

 311 

Figure 1. Representative diagram showing the copepod, Anomalocera ornata, response to the 312 

approach of a planktivorous fish predator (juvenile Mugil cephalus). The fish swims in a 313 

random cruising pattern just below the water surface until visually encountering a 314 

copepod. a) Once located visually, the fish swims toward the copepod and attempts to 315 

ingest it. b) The approach of the fish alerts the copepod to the presence of a potential 316 

predator and the copepod responds with an aerial leap. c) The copepod travels many 317 

times its own body length and significantly further than a single escape underwater to exit 318 

the perceptive field of the predator. d) Once the copepod re-enters the water it resumes 319 

swimming at the surface. Note: Not drawn to scale. 320 

 321 

Figure 2. a) Relationship between horizontal distance and maximum aerial velocity for two 322 

species of copepods during airborne escapes. Anomalocera ornata exhibits a significantly 323 

greater horizontal distance (P = <0.001, α = 0.050: 1.000 One-way ANOVA) and aerial 324 

velocity (P = <0.001, α = 0.050: 1.000 One-way ANOVA) than Labidocera aestiva. The 325 

larger copepod, A. ornata, is able to travel proportionally further per unit energy. Note: 326 

maximum aerial velocity was obtained at the moment the animal fully exited the water 327 

surface. Error bars represent Standard Deviation. b) Regression plot for A. ornata (R2 = 328 

0.36) and c) L. aestiva (R2 = 0.04), where A. ornata shows a stronger correlation of 329 

velocity with distance. 330 

 331 



Figure 3. Two observed techniques utilized by neustonic copepods to break through surface 332 

tension of seawater during aerial escape responses. a) Labidocera aestiva swims below 333 

the surface and is often oriented with the anterior portion of its body toward the water 334 

surface (1). b) Anamolcera ornata swims at the air-water interface with its dorsal side 335 

facing the surface and ventral side facing downwards (1). After being stimulated to 336 

perform an escape, swimming appendages (pereiopods) of both species beat sequentially 337 

as antennae fold against the body as the animal is propelled forward (2). As the animals 338 

accelerate, the increase in kinetic energy allows the body to overcome surface tension 339 

forces and travel through the air (3). 340 

 341 

Figure 4. a) Observed copepod trajectory during airborne versus a ballistic/free-fall model 342 

prediction.  b) Kinetic energy loss as a function of the copepod (maximum) speed below 343 

water surface. The squares label the data obtained via 500-frames-per-second video 344 

recording, and the triangles label the data obtained via 250-frames-per-second video 345 

recording. The solid green line is a fit to the data (∆K = 1.26x10-7 U0
2, where U0 is the 346 

copepod speed below water surface).  The solid blue line is the contribution to the kinetic 347 

energy loss due to water drag.  The solid red line is the difference between the green line 348 

and the blue line.  The 2 dashed horizontal lines represent, respectively, the work needed 349 

to overcome the surface tension in order for the copepod to be airborne for 2 assumed 350 

receding contact angles between the copepod and the seawater interface [calculated from 351 

Equation (4) for a constant σ = 0.075 N m-1]. Note that the red line is bounded between 352 

these 2 dashed horizontal lines.  Copepod prosome length = 1.8 mm, and aspect ratio = 353 

0.32. 354 
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