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8 Abstract 

9

10 Wheat is one of the world’s most important crops, but its production relies heavily on 

11 agrochemical inputs which are notoriously harmful to the environment. It is well known that a 

12 multitude of microbes interact with eukaryotic organisms, including plants, and the sum of 

13 microbes and their functions associated with a given host is termed the microbiome. Plant-microbe 

14 interactions can be beneficial, neutral or harmful to the host plant. Over the last decade, with the 

15 development of next generation DNA sequencing technology, our understanding of the plant 

16 microbiome structure has dramatically increased. Considering that defining the wheat microbiome 

17 is key to leverage crop production in a sustainable way, here we describe how different factors 

18 drive microbiome assembly in wheat, including crop management, edaphic-environmental 

19 conditions and host selection. In addition, we highlight the benefits to take a multidisciplinary 

20 approach to define and explore the wheat core microbiome to generate solutions based on 

21 microbial (synthetic) communities or single inoculants. Advances in plant microbiome research 

22 will facilitate the development of microbial strategies to guarantee a sustainable intensification of 

23 crop production. 

24  
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29 1. Introduction – Wheat and agricultural intensification on a fast-growing world

30  



31 Wheat was one of the first domesticated crops, between 7,000 and 9,000 BC, and has 

32 undergone a process of expansion to global cultivation [1] (Bell, 1987). Bread wheat, Triticum 

33 aestivum L., is the most widely cultivated species, with more than 20,000 known varieties. It is 

34 one of the most important crops worldwide, occupying 17 percent of the total cultivated land in 

35 the world and providing the staple food for 35 percent of the world’s population [2] (Laino et al. 

36 2015). Between 10,000 and 4,000 years ago people began growing food, which led to the 

37 domestication of wild crops and the emergence of agriculture [3] (Taiz, 2013). Agricultural 

38 progress has supported population growth, which globally now is estimated to be 7.7 billion [4] 

39 (United Nations (UN), 2019). Wheat is a major world crop, but to meet the calorie requirement of 

40 an increasing world population, an 11% increase in wheat production is required by 2026 with just 

41 a 1.8% increase in cultivation area [5] (OECD/FAO, 2017). Furthermore, it is estimated that by 

42 2050, population size will exceed 9.7 billion [4] (UN, 2019). A process of sustainable agricultural 

43 intensification must be implemented to make these crop productivity gains [6, 7] (Alexandratos 

44 and Bruinsma 2012; Davis et al. 2016) which will result in enhanced yield through increases in 

45 crop tolerance to biotic and abiotic stresses, improved nutrient use efficiency as well as the 

46 development of new bio-fertilizers [8, 9] (Dubey et al. 2020; Misra et al. 2020). It is well known 

47 that plants are colonized by microorganisms which can be beneficial to the host, and the potential 

48 of microbes to contribute to these sustainability goals has gained traction over the last years.  A 

49 better understanding of patterns of microbiome assemblage is of fundamental importance as a 

50 prerequisite for the use of the microbiome in sustainable agriculture. In this review, we focus on 

51 factors driving the wheat microbiome assembly. Additionally, we highlight the gaps that need to 

52 be addressed towards a microbially-assisted sustainable intensification of wheat production. 

53 Finally, we briefly discuss the use of the microbiome as a source of microbial inoculants, through 

54 the application of synthetic communities (bioinoculants) and/or via optimization of agricultural 

55 practices to stimulate the beneficial indigenous microbial communities (biostimulation). 

56  

57 2. Factors affecting wheat microbiome structure and diversity

58

59 The advent of high throughput DNA sequencing technologies has facilitated amplicon 

60 sequencing-based research, metagenomics and metatranscriptomics to determine the composition 

61 and functions of microbial communities associated with different crops. This has allowed the 



62 understanding of how different factors affect microbial communities associated with host plants 

63 in unprecedented detail in different niches in and around the host plant. Broadly speaking these 

64 can be divided into above-ground and below-ground niches. The phyllosphere [10] (Ruinen, 1956) 

65 refers to the above-ground parts of the plants, and most commonly to the leaves. The above-ground 

66 compartments comprise the leaves, stems (caulosphere) [11] (Compant et al. 2010), seeds and 

67 spikes or heads.  In addition, we propose the term “spicosphere” as the niche comprised of wheat 

68 spikes, as it is an important reservoir for pathogenic and beneficial microorganisms living inside 

69 and on the surfaces of the rachis and spikelets (comprised of lemma, palea, glume, floret, awn and 

70 grain).   Below-ground compartments can be divided into the rhizosphere [12] (Hiltner, 1904), the 

71 soil influenced by the host plant largely through root exudation, and the rhizoplane [13] (Clark, 

72 1949), the surface of the root. In addition, microbes can reside within intercellular spaces 

73 (endosphere), either in above- or below-ground tissues as endophytes [14, 15] (Hallmann et al. 

74 1997; Perotti, 1926) (Figure 1). Additionally, spermosphere is the term related to the dynamic zone 

75 surrounding germinating seeds [16, 17] (Nelson, 2004; Verona, 1958). 

76

77



78 Figure 1. The wheat microbiome divided into above- and below-ground sections. The below-ground 
79 compartments are the rhizosphere and rhizoplane. The above-ground compartment is known as the phyllosphere, and 
80 subdivisions of this include the caulosphere and “spicosphere”, with a detail of a spikelet. Created with 
81 BioRender.com
82

83 In addition to niche, many factors have been evaluated either alone or in combination to 

84 determine their influence on the wheat microbiome (Table 1). These include factors which are 

85 dependent on human interference (anthropogenic), soil-related factors (edaphic), 

86 environmental, which are related to natural conditions and host factors which are dependent on 

87 the plant species. 

88

89 Table 1. Evaluation of factors to determine their influence on the wheat microbiome

90

Type Factor Reference

Exogenous compounds (fungicide) [18, 19] Karlsson et al. (2014); Knorr et al. (2019)

Exogenous compounds (glyphosate) [20] Schlatter et al. (2017)

Exogenous compounds (insecticides) [21] Li et al. 2018

Exogenous compounds (phosphine 
fumigation of stored wheat grains) [22] Solanki et al. (2019)

Exogenous compounds (plastic 
mulch film residues) [23] Qi et al. (2020)

Fertilization

[24, 25, 26, 27, 28, 29, 30, 31, 32, 33] Amadou et al. (2020); Chen et al. 
(2019); Illescas et al. (2020); Kavamura et al. (2018); Liu et al. (2020); 

Pagé et al. (2019); Robinson et al. (2016); Schmalenberger et al. (2009); 
Simonin et al. (2020); Yergeau et al. (2020)

Inoculation of biocontrol agent [26, 34, 35] Araujo et al. (2019; 2020); Illescas et al. (2020)

A
nt

hr
op

og
en

ic

Land use [36-38] Kavamura et al. (2019); Rossmann et al. (2020); Schlatter et al. 
(2020a)



Management type [39-41] Gdanetz; Trail (2017); Hartman et al. (2018); Ishaq et al. (2020)

Overhead irrigation [42] Mavrodi et al. (2018)

Rotation [43-48] Donn et al. (2014); Lupwayi et al. (1998); Mayer et al. (2019); 
Wen et al. (2016); Xiong et al. (2020); Yin et al. (2010)

Tillage [40, 41, 44, 48, 49] Hartman et al. (2018); Ishaq et al. (2020); Lupwayi et 
al. (1998); Yin et al. (2010); Yin et al. (2017)

Soil depth [50, 51] Schlatter et al. (2020b); Uksa et al. (2017)

Soil history [52] Azarbad et al. (2020)

Soil physicochemical characteristics [24, 29, 50, 53-55] Amadou et al. (2020); Fan et al. (2017; 2018); Pagé et 
al. (2019); Schlatter et al. (2020b); Wolińska et al. (2020)E

da
ph

ic

Soil type [32, 35, 56] Araujo et al. (2020); Schlatter et al. (2019); Simonin et al. 
(2020)

Abiotic stresses (e.g. drought, 
humidity and temperature)

[42, 52, 57-60] Azarbad et al. (2020); Jochum et al. (2019); Latz et al. 
(2021); Mavrodi et al. (2018); Naylor et al. (2017); Stromberger et al. 

(2017)

Biotic stresses (pathogens, weed)
[34, 35, 41, 61-66] Araujo et al. (2019; 2020); Hayden et al. 2018; Hu et 
al. (2019); Ishaq et al. (2020); Kerdraon et al. (2019); Rojas et al. (2020); 

Seybold et al. (2020); Yin et al. (2013)

Geographical location

[32, 38, 43, 49, 53, 64, 67-70] Cordero et al. (2020); Donn et al. (2014); 
Fan et al. (2017); Latif et al. (2020); Mahoney et al. (2017); Rojas et al. 

(2020); Sapkota et al. (2017); Schlatter et al. (2020a); Simonin et al. 
(2020); Yin et al. (2017)

E
nv

ir
on

m
en

ta
l

Growing season [38, 41, 56, 63, 67] Cordero et al. (2020); Ishaq et al. (2020); Kerdraon et 
al. (2019); Schlatter et al. (2019; 2020a)

H
os

t

Breeding and domestication
[37, 71-76] Hassani et al. (2020); Kavamura et al. (2020); Kinnunen-

Grubb et al. (2020); Rossmann et al. (2020); Sun et al. (2020); Tkacz et 
al. (2020); Valente et al. (2019)



Genotype

[32, 33, 37, 43, 52, 55, 58, 60, 69, 70, 77, 78] Azarbad et al. (2020); Donn 
et al. (2014); Latz et al. (2021); Mahoney et al. (2017); Mauchline et al. 

(2015); Rossmann et al. (2020); Sapkota et al. (2017); Simonin et al. 
(2020); Stromberger et al. (2017); Wolińska et al. (2020); Yergeau et al. 

(2020); Zuo et al. (2014)

Growth stage

[25, 27, 30, 34, 35, 39, 43, 60, 64, 70] Araujo et al. (2019; 2020); Chen et 
al. (2019); Donn et al. (2014); Gdanetz; Trail (2017); Kavamura et al. 

(2018); Robinson et al. (2016); Rojas et al. (2020); Sapkota et al. (2017); 
Stromberger et al. (2017)

Leaf position [70] Sapkota et al. (2017)

Niche

[26, 36, 38, 43, 44, 47, 49, 53, 54, 58, 67] Cordero et al. (2020); Donn et 
al. (2014); Fan et al. (2017; 2018); Illescas et al. (2020); Kavamura et al. 
(2019); Latz et al. (2021); Lupwayi et al. (1998); Schlatter et al. (2020a); 

Xiong et al. (2020); Yin et al. (2017)

Organs/Tissues
[24, 30, 35, 39, 58, 64, 79, 80] Amadou et al. (2020); Araujo et al. (2020); 
Gdanetz; Trail (2017); Huang et al. (2016); Kuźniar et al. (2020); Latz et 

al. (2021); Robinson et al. (2016); Rojas et al. (2020)

Plant hormones [81, 82] Liu et al. (2017); Liu et al. (2018)

91

92 In the following sections, we focus on the different factors that affect the wheat microbiome 

93 structure, diversity and function. It is important to note that the factors discussed here are not 

94 exhaustive and exclusive, meaning there can be interactions of different factors accounting for 

95 changes in the wheat microbiome.

96  

97 2.1. Anthropogenic factors driving microbiome assembly

98

99 2.1.1. Exogenous compounds

100

101 Current conventional agriculture relies heavily on the use of exogenous compounds which 

102 can be environmentally damaging as well as threatening to human health [83, 84] (Ansari et al. 

103 2014; van Bruggen et al. 2018). These include the use of agrochemicals such as fertilizers, 

104 fungicides, insecticides and pesticides. However, research into the effect of the treatment of wheat 



105 seeds with neonicotinoid insecticides has revealed that they do not negatively impact wheat 

106 rhizosphere microbial communities [21] (Li et al. 2018). Similarly, the repeated pre-harvest 

107 application of glyphosate, the most widely used herbicide [85] (Malalgoda et al. 2020), had 

108 minimal impacts on soil and rhizosphere bacteria of wheat, with a small number of copiotrophic 

109 taxa benefiting from dying roots in the soil [20] (Schlatter et al. 2017). However, it’s important to 

110 highlight that in-field applications of glyphosate can differ, thus in the later, the authors conducted 

111 a 3-year experiment in which glyphosate was applied at the end of six weeks, to simulate a pre-

112 harvest application. Safer alternatives to these compounds could be the use of microbial-based 

113 natural products. The use of microorganisms as biological control agents is an environmentally 

114 benign alternative to pesticides [86] (Köhl et al. 2019), though a better understanding of these 

115 interactions is required to develop sustainable strategies to aid the establishment and persistence 

116 of beneficial microbes in agricultural systems. Besides, it is crucial to understand their impacts on 

117 indigenous soil microbial communities, given their role in the functioning of ecosystems. For 

118 example, Araujo et al. (2019; 2020) [34, 35] challenged soils infected with Rhizoctonia solani and 

119 Pythium sp. with biocontrol agents (Paenibacillus fulvissimus and Streptomyces spp.) to monitor 

120 changes in wheat microbial communities. Biocontrol isolates were able to modulate the 

121 endosphere and rhizosphere microbiomes, with generally low impact on indigenous microbial 

122 communities, as well as with a decrease in root disease and positive impacts on plant growth. The 

123 use of both low-density polyethylene (LDPE) and biodegradable plastic mulch films to increase 

124 crop productivity [23] (Qi et al. 2020) has been evaluated and the authors observed a significant 

125 effect of the residues on rhizosphere bacterial community composition and structure and volatiles 

126 emission, suggesting future efforts should concentrate at developing experiments to increase the 

127 understanding of these compounds on agroecosystems.

128 The impact of fertilizers on microbial communities is well studied. Application of high 

129 levels of inorganic nitrogen fertilizers reduced bacterial richness and diversity, leading to a less 

130 stable bacterial community structure, and this was exacerbated with increased crop maturity. 

131 Members of Acidobacteria and Planctomycetes were significantly depleted in treatments receiving 

132 inorganic N and 16S rRNA gene-predicted functional structure was also impacted [27] (Kavamura 

133 et al. 2018). In another study the use of organic amendments such as biochar and manure were 

134 compared to the use of mineral fertilization on above (spikelet) and belowground (rhizosphere and 

135 root) bacterial communities, with significant changes in their structure and diversity [24] (Amadou 



136 et al. 2020). In addition, Chen et al. 2019 [25] found that nitrogen fertilization affected rhizosphere 

137 bacterial communities isolated from wheat plants during tillering but not during jointing and 

138 ripening. 

139

140 2.1.2. Agricultural practices 

141  

142 Agricultural practices such as tillage and crop rotation can have detrimental effects on the 

143 environment, such as emissions of greenhouse gases (GHGs) [87] (Önder et al. 2011). No-tillage 

144 practices have been shown to reduced global warming potential when compared to conventional 

145 tillage [88] (Shakoor et al. 2021). The effect of tillage is stronger in the bulk soil than rhizosphere 

146 [49] (Yin et al. 2017). Similar findings were observed by Lupwayi et al. (1998) [44], in which the 

147 effect of tillage was more prominent in bulk soil than rhizosphere with significant decrease in 

148 bacterial diversity in the bulk soil.

149 Conventionally-tilled wheat monoculture and wheat-soybean rotation resulted in a lower 

150 bacterial diversity compared with the no-till treatment [48] (Yin et al. 2010). Hartman et al. 2018 

151 [40] investigated the impact of common cropping practices (management type and tillage 

152 intensities) on bacterial and fungal communities in winter wheat. Root bacterial communities 

153 (rhizoplane or endosphere) were primarily affected by management type (conventional vs 

154 organic), whereas fungal communities were generally influenced by changes in tillage intensity. 

155 Long-term monoculture can change soil properties, affecting bacterial diversity and this 

156 has been demonstrated by Mayer et al. (2019) [45]. Although they used maize monoculture, they 

157 were able to show that humus content was lower when compared to maize-wheat rotation, 

158 suggesting that lower concentrations of humus could decrease the amount of available nutrients 

159 for plant growth and decrease microbial richness. Some positive impacts of rotation of sunflower 

160 with wheat and maize on bacterial communities were observed, which could potentially alter plant 

161 productivity in agricultural systems [46] (Wen et al. 2016).

162 In a study conducted using samples from the Highfield experiment at the Rothamsted 

163 Research farm in Harpenden, Hertfordshire, UK [89] (Hirsch et al. 2017), conversion of grassland 

164 to an arable system resulted in a significant reduction in the abundance of OTUs assigned to 

165 specific bacterial taxa [36] (Kavamura et al. 2019). When comparing wheat grown in arable and 



166 forest soil, Rossmann et al. (2020) [37] observed that the soil type had major impacts on bacterial 

167 and cercozoan rhizosphere communities and less influence on fungal community composition. 

168

169 2.2. Edaphic conditions driving microbiome assembly

170

171 It is well known that differences in soil physical and chemical properties drive microbiome 

172 community structure in wheat. Amadou et al. (2020) [24] observed that the amendment of soil 

173 with biochar and manure as well as the addition of inorganic mineral fertilizers changed soil 

174 properties, in particular NH4
+ content, and these impacted above (spikelet) and belowground 

175 (rhizosphere and root) bacterial community structure. Organic amendments can improve water 

176 retention and are associated with increased acid phosphatase, β-1,4-N-acetyl-glucosaminidase and 

177 phenol oxidase activity, whereas inorganic fertilizers lower the pH, increasing nutrient 

178 assimilability. Changes in chemical properties of rhizosphere soil, such as pH and nutrient 

179 availability which impact bacterial communities can also be attributed to root exudates [53] (Fan 

180 et al. 2017). Soil pH is the main driver of microbial community structure including archaeal, 

181 bacterial and fungal members [53, 54] (Fan et al. 2017; 2018). Soil texture has also been shown to 

182 be important in structuring microbial communities [56] (Schlatter et al. 2019). 

183 Most soil microbial community structure studies have concentrated on the topsoil. 

184 However, [50] Schlatter et al. (2020b) and Uksa et al (2017) [51] have characterized the 

185 composition and diversity of bacterial communities across a wide range of soil depths. Both 

186 observed that Proteobacteriota are enriched in the topsoil, though the former also observed that 

187 Acidobacteria were more abundant at 10 cm, presumably because of soil acidification from 

188 fertilizer application. In addition, Uksa et al. (2017) [51] also observed that Firmicutes and 

189 Bacteroidota taxa were enriched in the subsoil. 

190

191 2.3. Environmental factors driving microbiome assembly

192

193 2.3.1. Abiotic factors

194

195 In addition to soil properties, several abiotic factors can affect microbial communities. Latz 

196 et al. (2021) [58] observed location-dependent effects (in the glasshouse and outside the 



197 glasshouse) on wheat microbiome composition, which were likely a result from differences in the 

198 environmental conditions (temperature, humidity and precipitation). Water is one of the most 

199 limiting factors for plant development and agricultural losses due to drought are quite substantial. 

200 Azarbad et al. (2020) [52] investigated the influence of soil water stress history, wheat genotypes 

201 with differences in their drought tolerance, and short-term decrease in soil water content on 

202 microbial communities of wheat. Soil history, in this case, was soil from two fields which have 

203 been subjected to irrigation and no irrigation for almost 40 years. It was found that water regime 

204 was the main driver of bacterial and fungal community structure in the rhizosphere and root 

205 samples of wheat. Stromberger et al. (2017) [60] investigated the effect of different irrigation 

206 regimes on bacterial communities and observed an enrichment of 1-aminocyclopropane-1-

207 carboxylic acid (ACC) deaminase bacteria in the rhizosphere of a drought tolerant cultivar, 

208 indicating that it either produces more ACC and ethylene or is more effective in recruiting ACC 

209 deaminase expressing bacteria into this niche. Mavrodi et al. (2018) [42] conducted a three-year 

210 field study on wheat grown in irrigated and non-irrigated plots to assess the effect of soil water 

211 status on bacterial communities. A decrease in the production of the antibiotic phenazine-1-

212 carboxylic acid (PCA) and associated PCA producers (Phz+) Pseudomonas in the rhizosphere of 

213 irrigated plants was observed. They hypothesised that an increase in soil moisture perturbs 

214 interactions within the rhizosphere microbiome, altering the root exudation and soil properties.

215

216 2.3.2 Biotic factors

217

218 Biotic factors such as the presence of pathogens is another deterministic factor. Wheat 

219 residues can determine the epidemiology of Septoria tritici blotch as they support the growth of 

220 the causal fungal agent Zymoseptoria tritici [63] (Kerdraon et al. 2019). Their results show that 

221 pathogen infection dynamically changes bacterial and fungal interactions. In addition, it has 

222 become evident that soils inoculated with pathogens can become suppressive over time to specific 

223 pathogens [66] (Yin et al. 2013). Enrichment and activation of bespoke groups of microorganisms 

224 in soil can lead to microbial suppression of pathogens, however, the factors which contribute to 

225 the development of these systems are not yet fully understood [90, 91] (Chapelle et al. 2016; 

226 Raaijmakers and Mazzola, 2016). Yin et al (2013) [66] showed that Chryseobacterium and 

227 Pseudomonas became more prevalent in the rhizosphere over time after soil inoculation with 



228 Rhizoctonia solani. These strains exhibited inhibitory activities against the fungus in vitro or 

229 reduced the infection in soils, indicating that they might play a role in the transition of 

230 conduciveness to suppressiveness. Hayden et al. (2018) [61] used a metatranscriptomics approach 

231 to characterize the active members and functions of the wheat rhizosphere microbiome in 

232 suppressive and conducive soil conditions to Rhizoctonia solani. They described the gene 

233 expression in the tri-trophic interaction and propose that this information can be used to direct 

234 management options to promote beneficial rhizosphere microbiota colonization and activity to 

235 reduce pathogen infection. 

236 Similar to the gut microbiome, which is known to play an important role in host health [92] 

237 (Lamoureux et al. 2017), the microbiome of plants helps them tolerate biotic and abiotic stresses 

238 [93] (Vandenkoornhuyse et al. 2015). Thus, understanding the plant-microbiome interactions can 

239 be used to manage abiotic and/or biotic stresses. In addition, host defense mechanisms have an 

240 important role in structuring microbial communities [94, 95] (Jones et al. 2019; Teixeira et al. 

241 2019). Teixeira et al. (2019) [95] proposed that the microbiome can protect the host against 

242 pathogens, directly via suppression with secondary metabolite production or through competition 

243 for resources; as well as indirectly, via the stimulation of the host’s immune system. In other cases, 

244 pathogens have evolved mechanisms to overcome the immune defense. For example, the wheat 

245 pathogen Zymoseptoria tritici has been shown to induce systemic host susceptibility through 

246 altered plant metabolism and microbial community structure, making it more vulnerable to 

247 infection [65] (Seybold et al. 2020).  

248 There are several other environmental factors that can contribute to differences in 

249 microbiome structure, diversity and function. Biogeographic studies aim to evaluate the 

250 distributions of soil microbial diversity, composition and functions over space and time from 

251 regional to global scales [96] (Chu et al. 2020). Fan et al. (2017) [53] studied nine wheat fields 

252 distributed across 800,000 km2 to study the influence of geographical distance on bacterial 

253 communities from loosely and tightly bound rhizosphere soil, suggesting that geographic distance 

254 was the main driver of community distribution. Schlatter et al. (2020a) [38] explored bacterial and 

255 fungal communities of wheat grown in soil from four distinct locations, observing significant 

256 effects on the structure and composition of microbial communities which could be linked with 

257 differences in soil properties as previously discussed. 



258 Finally, seasonal changes can also account for differences in wheat microbiome. Schlatter 

259 et al. (2019) [56] observed significant effects of the growing season on bacterial and fungal 

260 community composition, however, richness and diversity were not affected. 

261

262 2.4. Host microbiome selection

263

264 2.4.1. Niche, plant compartment and seed load

265

266 Niche plays an important role in shaping microbial communities. The root acts as a physical 

267 barrier and a subset of these bacteria can colonize the endosphere [36, 97] (Beckers et al. 2017; 

268 Kavamura et al. 2019). In addition to the bulk soil-derived microbial colonization of the plant host, 

269 the microbial seed load is also a source of microbes capable of colonizing the developing plant. 

270 Kavamura et al. (2019) [36] found using an embryo excision-based approach, that the seed-borne 

271 bacterial community was important for shaping the endosphere of wheat when plants were cultured 

272 in soil that was not adapted for wheat, whereas this was not the case for the rhizosphere 

273 community. In addition, Cordero et al. (2020) [67] demonstrated that when growing the same plant 

274 species on agricultural soils, variations between the endosphere and rhizosphere microbiome were 

275 observed, suggesting that the root microbiome is under a greater degree of host control. Specific 

276 phyla have been identified to be associated with different wheat compartments, with 

277 Proteobacteriota being the most abundant in the root endosphere, whereas Firmicutes and 

278 Actinobacteriota were more prevalent in the endosphere of leaves [30] (Robinson et al. 2016). To 

279 identify which factors contributed the most in shaping the fungal endosphere microbiome of 

280 different wheat compartments (roots, leaves and seeds), Latz et al. (2021) [58] analyzed ITS 

281 amplicon sequencing of wheat grown indoors and outdoors and concluded that environmental 

282 factors were more important for phyllosphere than rhizosphere and that airborne fungi are the main 

283 source of leaf and seed microbes. Donn et al. (2014) [43] performed a cross-year analysis of 

284 bacterial communities in an intensive wheat cropping system and observed changes over time in 

285 rhizosphere communities and those differences were not observed for bulk soil samples, 

286 suggesting they were plant instead of seasonally driven. In comparison to the bulk soil, rhizosphere 

287 microbial communities are less complex and more stable as demonstrated by co-occurrence 

288 networks [54] (Fan et al. 2018). In a more complete and recent study, Xiong et al. (2020) [47] 



289 demonstrated the strong selection imposed by the host, showing a decrease in diversity and 

290 complexity of bacterial communities from bulk soil > rhizosphere soil > rhizoplane > phylloplane 

291 > root endosphere > leaf endosphere. Rhizosphere is the most studied niche, followed by the 

292 phyllosphere. The microbiome of wheat spikes is less well documented; however, this niche is 

293 important as some pathogens infect the spikes, such as Fusarium graminearum and Magnaporthe 

294 oryzae pv. Triticum (MoT), causal agents of Fusarium head blight (FHB) and wheat blast, 

295 respectively. However, it is known that bacterial diversity is lower in spikes than in the rhizosphere 

296 [24] (Amadou et al. 2020). In addition, Rojas et al. (2020) [64] observed that when wheat is 

297 infected by Fusarium, a shift in fungal endophytic community colonization dynamics occurs. 

298 Furthermore, some genera (Cladosporium, Itersonillia and Holtermanniella) were found to 

299 outcompete the pathogen, preventing the development of the disease. The bacterial endophytes of 

300 wheat endosperm, germ, coleoptiles as well as roots and leaves were studied by Kuźniar et al. 

301 (2020) [80]. They found several beneficial bacteria and Pseudomonas spp. was the only genus that 

302 was detected in all samples. Vertical transmission of the wheat microbiome was assessed and taxa 

303 belonging to Erwinia, Rhizobiales and fungal genus Emericella might be vertically transmitted 

304 from seeds to sprouts [79] (Huang et al. 2016). 

305

306 2.4.2. Plant domestication, breeding and wheat genotype

307  

308 The introduction of reduced height (Rht) dwarfing genes into modern wheat cultivars 

309 during the Green Revolution resulted in plants with increased yields when cultured with high 

310 fertilization application, without productivity losses caused by lodging [98] (Hedden, 2003). 

311 Consistent and continuing reductions in height with increases in yield were achieved worldwide 

312 [99] (Law et al. 1978). Effectuated by breeding efforts, modern crops have diverged genetically 

313 and phenotypically from their wild relatives. Selection for improved wheat varieties may have 

314 resulted in changes to root architecture and physiology, which in turn might have affected 

315 microbial communities [100, 101] (Bertin et al. 2003; Graaff et al. 2013). Wheat root-associated 

316 microbiomes have dramatically changed through a transect of breeding history [73] (Kinnunen-

317 Grubb et al. 2020). Differential recruitment of bacterial communities in tall and semi-dwarf wheat 

318 cultivars suggest breeding might have affected the ability of wheat to select and sustain a complex 

319 bacterial community in the rhizosphere [72] (Kavamura et al. 2020), negatively impacting the 



320 ability of modern plants to interact with plant growth-promoting rhizobacteria [76] (Valente et al. 

321 2019). Similar findings were reported by Rossmann et al. (2020) [37], where the effect of wheat 

322 domestication on bacterial, fungal, and communities of cercozoa was evaluated. Both 

323 domestication and breeding affected network topology, with microbial co-occurrence networks 

324 from landraces and tall wheat cultivars being more connected, suggesting a reduced functional 

325 redundancy in the root microbiome of modern cultivars. Fungal endophyte communities in wild 

326 wheat are richer and more diverse than in cultivated wheat, representing a greater reservoir of 

327 potentially beneficial endophytes as a higher proportion of differentially abundant taxa was found 

328 [74] (Sun et al. 2020). The consequences of plant breeding for the associated microbiome are not 

329 yet fully understood, however, it has been proposed that domestication has disrupted selective 

330 processes in the assembly of the wheat microbiome [71] (Hassani et al. 2020). A synthetic hybrid 

331 hexaploid wheat was created to recapitulate the breeding history of wheat, suggesting that the D 

332 genome from Ae. tauschii (diploid) strongly select for Glomeromycetes and Nematoda. Besides, 

333 the ratio of eukaryotes to prokaryotes remains the same, likely due to a protective mechanism 

334 against soil-borne fungal diseases in wheat, which might be intrinsic to the wheat genome [75] 

335 (Tkacz et al. 2020). 

336 The effect of different wheat genotypes has been thoroughly investigated [32, 33, 43, 52, 

337 55, 58, 60, 69, 70, 77, 78] (Azarbad et al. 2020; Donn et al. 2014; Latz et al. 2021; Mahoney et al. 

338 2017; Mauchline et al. 2015; Sapkota et al. 2017; Simonin et al. 2020; Stromberger et al. 2017; 

339 Wolińska et al. 2020; Yergeau et al. 2020; Zuo et al. 2014) and those differences could be attributed 

340 to the differential root exudate chemistry [60, 69, 78] (Mahoney et al. 2017; Stromberger et al. 

341 2017; Zuo et al. 2014) and disease susceptibility [70, 77] (Mauchline et al. 2015; Sapkota et al. 

342 2017). The use of genome-wide association studies (GWAS) will likely improve our understanding 

343 of the genetic basis of microbiome selection by host plants [58] (Latz et al. 2021). 

344

345 2.4.3. Developmental stages 

346

347 The plant microbiome structure dynamically changes over time from seed to the flowering 

348 stage. Donn et al. (2014) [43] demonstrated the evolution of bacterial communities within the 

349 rhizosphere, with an increased diversity with plant age and senescence. It appears that growth stage 

350 has a stronger influence on bacterial communities than on fungal community composition [25] 



351 (Chen et al. 2019). Araujo et al. (2019) [34] observed that the diversity of bacterial genera 

352 increased over time, with some bacterial genera dominating the initial stages, such as 

353 Agrobacterium, Bacillus, Flavobacterium, Rhizobium, and Rhodoplanes, whereas other genera 

354 increased in the later stages, mainly Actinoallomurus, Aminobacter and Mycobacterium. 

355 Regarding fungal communities, Alternaria, Fusarium/Gibberella, and Lewia were common in the 

356 early stage and Exophiala at 12 weeks. The same trend in increased diversity over time was 

357 observed for endosphere communities. Gdanetz and Trail (2017) [39] observed an increase in both 

358 bacterial and fungal endosphere community diversity over time (vegetative, flowering and seed 

359 development stages) which could be explained by the ecological succession within the plant 

360 microbiome or a reflection of responses to metabolites produced by plant maturation. Sapkota et 

361 al. (2017) [70] studied the spatiotemporal variation in fungal communities within the wheat canopy 

362 at different growth stages, describing key fungal species in the phyllosphere and a general increase 

363 over time. However, Kavamura et al. (2018) [27] found that when comparing contrasting 

364 fertilization regimes, a reduction in bacterial richness was observed over time in the rhizosphere. 

365 It was also found that taxonomical diversity remained stable over time following high N 

366 application, although, a reduction was seen when N supply was suboptimal. In addition, Robinson 

367 et al. (2016) [30] when studying the root and leaf endosphere, a reduction in bacterial species 

368 richness with increased plant maturity regardless of fertilization regime was detected. As such, the 

369 relationship between microbial community composition and growth stage is complicated as it is 

370 influenced by many factors. 

371

372 3. Core wheat bacterial communities

373

374 We have described the major drivers of microbiome structure in wheat. In addition, it is 

375 important to consider the core microbiome, members being consistent features of a dataset that are 

376 hypothesized to reflect underlying functional relationships with the host [102] (Shade and 

377 Stopnisek (2019). Different approaches have been used to determine the core microbiome of plants 

378 such as the use of a theoretical framework [103] (Toju et al. 2018), abundance-occupancy 

379 distribution [102] (Shade and Stopnisek, 2019), microbiome package in R [32, 104] (Lahti et al. 

380 2017; Simonin et al. 2020), network analyses [105] (Cernava et al. 2019), DESeq2 [38] (Schlatter 

381 et al. 2020a), QIIME 2 [37, 106, 107] (Chopyk et al. 2020; Douglas et al. 2020; Rossmann et al. 



382 2020). Although the term “core microbiome” has been widely used, there is disagreement 

383 surrounding its definition and to the method that should be deployed to define the core microbes 

384 which are associated with a given host [108] (Risely, 2020). 

385 Attempts to define the core microbiome of wheat have utilized large datasets [38] (Schlatter 

386 et al. 2020a). One study identified a core microbiome of 30 bacterial, 24 fungal and 10 taxa 

387 assigned to protists by utilizing data from three wheat genotypes grown in eight contrasting soils 

388 from Europe and Africa [32] (Simonin et al. 2020). In another study, Rossmann et al. (2020) [37] 

389 identified 22 bacterial and 13 fungal taxa and 3 taxa assigned to protists corresponding to the core 

390 microbiome of modern wheat cultivars. However, only four bacterial genera (Arthrobacter, 

391 Bradyrhizobium, Massilia and Nitrospira), four fungal taxa (Bionectria, Chaetomium, Exophiala 

392 and Fusarium) and two protists (Eocercomonas and Rhogostoma) were common between the two 

393 studies (Figure 2, demonstrating that the determination of the core microbiome is challenging and 

394 that the most appropriate method to do this has not yet been identified. For example, networks 

395 have been used to identify keystones species of wheat [35, 69] (Araujo et al. 2020; Mahoney et al. 

396 2017) and DESeq2 has been used as a tool to identify both the core and differentially abundant 

397 taxa within treatments [27, 36, 38, 42, 56, 72] (Kavamura et al. 2018; Kavamura et al. 2019; 

398 Kavamura et al. 2020; Schlatter et al. 2020a; Schlatter et al. 2019; Mavrodi et al. 2018) (Figure 2). 

399 No genus was found to be common among all these different studies. Sphingomonas was detected 

400 in 80% of the studies; Bradyrhizobium in 70%; Massilia and Pseudomonas in 60%; and 

401 Arthrobacter, Chitinophaga, Flavobacterium, Mucilaginibacter, Pantoea, Pedobacter and 

402 Variovorax in 50% of the studies. It is important to highlight that the list of genera observed in 

403 Figure 2 is not exhaustive, and the absence of other genera does not mean they are not present in 

404 those samples. It means that using the methods and tools available, these genera were found to be 

405 differentially abundant or were found to be keystone taxa when the different factors were 

406 considered.  

407 With the definition of the core microbiome, it is possible to identify permanent community 

408 members as opposed to stochastic contributors for a given niche [109] (Berg et al. 2020). The 

409 recovery of representatives of such genera using culture-dependent methods and subsequent 

410 testing of their functional abilities both in vitro and in planta could be a strategy for the 

411 development of new inoculants. It follows that due to the phenomenon of functional redundancy, 

412 a true core microbiome based on taxonomy does not exist and that the core microbiome is a 



413 functional phenomenon, based on the presence of key genes which are not assessed in a 

414 taxonomical approach. 
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445 Figure 2. Correlation plot showing 256 bacterial genera commonly associated to wheat from ten studies (A-

446 J) (A-Simonin et al. 2020 [32]; B- Rossmann et al. 2020 [37]; C- Araujo et al. 2020 [35]; D- Mahoney et al. 2017 

447 [69]; E- Kavamura et al. 2018 [27]; F- Kavamura et al. 2019 [36]; G- Kavamura et al. 2020 [72]; H- Schlatter et al. 

448 2020a [38]; I- Schlatter et al. 2019 [56]; J- Mavrodi et al. 2018 [42]). Studies A and B determined the core microbiome 

449 using R microbiome package and QIIME, respectively. Studies C and D used networks to identify keystone taxa. 

450 Studies E-J identified differentially abundant taxa using DESeq2. 

451    

452 3.1 Putative PGPR associated with wheat

453

454 Microbial communities in soil influence plant health, growth, and resource use efficiency, 

455 especially the subset that is selected by plants to form the root microbiome [110, 111] (Berendsen 

456 et al. 2012; Mendes et al. 2013). Bioprospecting microbes with plant growth-promoting (PGP) 

457 traits to increase productivity is a promising alternative to agrochemical application [112] 

458 (Nagargade et al. 2018). Plant growth-promoting rhizobacteria (PGPR) can influence plants 

459 through direct and indirect mechanisms [113] (Solano et al. 2008). Goswami et al. (2016) [114] 

460 define direct PGPR activity as any mechanism that directly enhances plant growth. Examples 

461 include phytohormone production such as abscisic acid, indole 3-acetic acid (IAA), gibberellin, 

462 cytokinin, and ethylene; nutrient (nitrogen, phosphorus, potassium and zinc) solubilization; 

463 nitrogen fixation, and siderophore production. Indirect mechanisms protect plants from infections 

464 and abiotic environmental stresses via the production of enzymes (cellulase, chitinase, protease), 

465 volatiles (ammonia, hydrogen cyanide), bioactive secondary metabolites, and osmolytes [115, 

466 116] (Saraf et al. 2011; Tyc et al. 2017).

467 There is great potential for isolated bacteria to be used in improving wheat growth and 

468 many genera have been described in the literature as being capable of promoting plant growth. We 

469 searched the literature for specific PGP properties in bacterial genera commonly associated with 

470 wheat (Figure 2), with search results being displayed in Table 2. 

471

472 Table 2. Bacterial genera frequently associated with wheat which have been found to demonstrate putative 

473 PGP functions  

474  

Phylum (Class)* Genus PGP



Function Source

Aeromicrobium Phosphate solubilization, IAA and NH3 production [117] (Yadav et al. 
2014)

Cold desert [117] 
(Yadav et al. 2014)

Arthrobacter

Phosphate solubilization, IAA, siderophore, NH3 and GA production 
[117] (Yadav et al. 2014); Phosphate and zinc solubilization, IAA, 

siderophore, NH3 and ACC production, nitrogen fixation and 
biocontrol of Fusarium graminearum, Rhizoctonia solani and 

Macrophomina phaseolina [118] (Verma et al. 2015); putative N2 
fixation [119] (Rilling et al. 2018)

Cold desert [117] 
(Yadav et al. 2014); 
wheat [118] (Verma 
et al. 2015); wheat 
rhizosphere[119] 

(Rilling et al. 2018)

Actinobacteriota

Streptomyces Phosphate solubilization and siderophore, IAA and extracellular 
enzymes (chitinase, alkaline protease, phytase, cellulase) production 

[120] (Jog et al. 2012)

Wheat rhizosphere 
[120] (Jog et al. 

2012)

Chitinophaga Putative N2 fixation [119] (Rilling et al. 2018)

Wheat rhizosphere 
and endosphere 

[119] (Rilling et al. 
2018)

Chryseobacterium
Phosphate, zinc and potassium solubilization, IAA, ACC, 

siderophore, NH3, protease, cellulase and lipase production [121] 
(Gontia-Mishra et al. 2017)

Wheat rhizosphere 
[121] (Gontia-

Mishra et al. 2017)

Dyadobacter Phosphate solubilization [122] (Zhang et al. 2012); nitrogen fixation 
[123] (Kumar et al. 2018)

Wheat rhizosphere 
[122] (Zhang et al. 

2012); bulk soil 
[123] (Kumar et al. 

2018)

Flavobacterium Phosphate and zinc solubilization, IAA, siderophore, HCN, NH3 and 
ACC production [118] (Verma et al. 2015); Phosphate and zinc 

solubilization, IAA, ACC, siderophore and NH3 production [121] 
(Gontia-Mishra et al. 2017)

Wheat [118] (Verma 
et al. 2015); wheat 
rhizosphere [121] 

(Gontia-Mishra et al. 
2017)

Bacteroidota

Mucilaginibacter
EPS production [124] (Han et al. 2012); IAA production [125] 

(Chimwamurombe et al. 2016)

Rhizoplane of 
Angelica sinensis 
[124] (Han et al. 

2012); endosphere of 
Tylosema 

esculentum [125] 

javascript:;


(Chimwamurombe 
et al. 2016)

Segetibacter Not available
Bulk soil from 

ginseng field [126] 
(An et al. 2007)

Bacillus
Phosphate, potassium and zinc solubilization, IAA, siderophore, GA, 
HCN, NH3 and ACC production, nitrogen fixation and biocontrol of 

Fusarium graminearum, Rhizoctonia solani and Macrophomina 
phaseolina phaseolina [118] (Verma et al. 2015); putative N2 fixation 

[119] (Rilling et al. 2018); Zinc solubilization, IAA, ACC, NH3, 
protease, and cellulase production [121] (Gontia-Mishra et al. 2017)

Wheat [118] (Verma 
et al. 2015], Wheat 

rhizosphere and 
endosphere [119] 

(Rilling et al. 2018); 
wheat rhizosphere 

[121] (Gontia-
Mishra et al. 2017)Firmicutes

Paenibacillus Phosphate solubilization and NH3 and IAA production [127] (Rana et 
al. 2011)

Wheat rhizosphere 
[127] (Rana et al. 

2011)

Gemmatimonadota Gemmatimonas Not available

Anaerobic–aerobic 
sequential batch 

wastewater 
treatment reactor 

[128] (Zhang et al. 
2003)

Myxococcota Haliangium Antifungal production [129] (Fudou et al. 2001) Seaweed [129] 
(Fudou et al. 2001)

Bradyrhizobium
IAA production, protease and cellulolytic activity [130] (Masciarelli 

et al. 2014)

Seed endosphere of 
soybean [130] 

(Masciarelli et al. 
2014)

Proteobacteria 
(Alphaproteobacteria)

Brevundimonas

IAA, siderophore, GA and NH3 production and biocontrol of 
Fusarium graminearum, Rhizoctonia solani and Macrophomina 

phaseolina [118] (Verma et al. 2015); NH3 and IAA production and 
phosphate solubilization [127] (Rana et al. 2011)

Wheat [118] (Verma 
et al. 2015); wheat 
rhizosphere [127] 
(Rana et al. 2011)

javascript:;


Caulobacter
IAA production and ARA [131] (Habibi et al. 2014); plant growth 

promotion [132] (Luo et al. 2019)

Rice endosphere 
[131] (Habibi et al. 

2014); maize 
endosphere [132] 
(Luo et al. 2019)

Devosia
Nitrogen fixation [133] (Rivas et al. 2002); biocontrol of Fusarium 

graminearum [134] (Sato et al. 2011)

Root nodules of 
Neptunia natans 

[133] (Rivas et al. 
2002); wheat field 

soil [134] (Sato et al. 
2011)

Rhizobium IAA, HCN and NH3 production and heavy metal tolerance [135] 
(Singh and Lal 2016)

Wheat rhizosphere 
[135] (Singh and Lal 

2016)

Sphingomonas
Nitrogen fixation, phosphate solubilization, siderophore, IAA, and 

ACC deaminase production [136] (Correa-Galeote et al. 2018)

Maize endosphere 
[136] (Correa-

Galeote et al. 2018)

Proteobacteria 
(Gammaproteobacteria) Burkholderia ACC deaminase and IAA production [137] (Shaharoona et al. 2007)

Wheat rhizosphere 
[137] (Shaharoona et 

al. 2007)



Massilia
IAA, siderophore and protease production [125] (Chimwamurombe et 

al. 2016)

Endosphere of 
marama bean 

(Tylosema 
esculentum) [125] 
(Chimwamurombe 

et al. 2016)

Pantoea

Zinc solubilization, IAA, siderophore, GA, HCN, NH3 and ACC 
production, nitrogen fixation and biocontrol of Fusarium 

graminearum, Rhizoctonia solani and Macrophomina phaseolina 
[118] (Verma et al. 2015)

Wheat [118] (Verma 
et al. 2015)

Pedobacter
IAA production [138 (Yuan et al. 2011) Fertilized soil [138] 

(Yuan et al. 2011)

Pseudomonas

Phosphate and zinc solubilization, IAA, siderophore, GA, HCN, NH3 
and ACC production, nitrogen fixation and biocontrol of Fusarium 
graminearum, Rhizoctonia solani and Macrophomina phaseolina 

[118] (Verma et al. 2015); Phosphate, zinc and potassium 
solubilization, IAA, ACC, siderophore, NH3, EPS, protease, and 

lipase production [121] (Gontia-Mishra et al. 2017); NH3, HCN and 
IAA production and antifungal activity against Macrophomina 

phaseolina [127] (Rana et al. 2011)

Wheat [118] (Verma 
et al. 2015); wheat 
rhizosphere [121] 

(Gontia-Mishra et al. 
2017; Rana et al. 

2011)

Rhodanobacter
IAA production, phosphate solubilization and antifungal activity 

against Cylindrocarpon destructans and Fusarium solani) [139] (Huo 
et al. 2020)

Ginseng rhizosphere 
[139] (Huo et al. 

2020)
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Stenotrophomonas

Phosphate and potassium solubilization, IAA, siderophore, GA, HCN, 
NH3 and ACC production, nitrogen fixation and biocontrol of 

Fusarium graminearum, Rhizoctonia solani and Macrophomina 
phaseolina [118] (Verma et al. 2015); Zinc solubilization, IAA, ACC, 

siderophore and NH3 production [121] (Gontia-Mishra et al. 2017)

Wheat [118] (Verma 
et al. 2015); wheat 
rhizosphere [121] 

(Gontia-Mishra et al. 
2017)

Variovorax Inorganic phosphate solubilization [140] (Zheng et al. 2019); ACC 
deaminase, siderophore and IAA production and cadmium tolerance 

[141] (Belimov et al. 2005)

Bulk soil [140] 
(Zheng et al. 2019); 

indian mustard 
(Brassica juncea) 
rhizosphere [141] 

(Belimov et al. 
2005)

475 *Taxonomy classification according to the Genome Taxonomy Database (GTDB) [142] (Parks et al. 2018). 
476 ACC – 1-aminocyclopropane-1-carboxylate; ARA - acetylene reduction activity; EPS – exopolysaccharide; 
477 GA – gibberelic acid; HCN – hydrogen cyanide; IAA – indole 3-acetic acid; NH3 – ammonia.
478

479 It should be noted that not all PGP functions described in Table 2 were observed in wheat. 

480 However, the fact that these bacteria are commonly associated with wheat does suggest that they 

481 could perform PGP activities in this crop. However, an important point is that the taxonomic 

482 affiliation of a bacterial isolate does not necessarily mean that it will perform a particular function. 

483 For example, Rhizobium spp. isolated in the UK are not able to fix nitrogen because they lack 

484 genes associated with this biosynthetic pathway [143] (Jones et al. 2016). 

485 Another consideration for the use of PGP bacteria is their ease of culturability. Although 

486 Table 2 was based on PGP function in bacterial cultures, it should be noted that some genera are 

487 more difficult to culture than others. For example, Segetibacter koreensis has been isolated from 

488 soil from a ginseng field in South Korea [126] (An et al. 2007). Additionally, a Gemmatimonas 

489 strain was obtained from an anaerobic–aerobic sequential batch wastewater treatment reactor [128] 

490 (Zhang et al. 2003). Although widely spread in different environments, not many members of 

491 Gemmatimonas have been successfully cultivated [144] (Chee-Sanford et al. 2019). The genus 

492 Haliangium comprises myxobacteria with potential to produce bioactive secondary metabolites 

493 however, they are also hard to culture [145] (Mohr 2018). This highlights the need for improving 

494 and developing novel cultivation methods [146] (Busby et al. 2017). 



495

496 4. Gaps - How far are we from achieving a microbiome-facilitated sustainable agriculture? 

497

498 The improvement of sequencing technologies has facilitated researchers to assess 

499 microbial communities in unprecedented detail. However, the deployment of microbes into 

500 agriculture has many challenges [147, 148] (Parnell et al. 2016; Sessitch et al. 2019). Some of 

501 these are related to the formulation of microbes, their susceptibility to stresses, and their ability to 

502 colonize different niches in the face of competition from indigenous microbes, as well as the in-

503 field expression of the desirable function and warranty of their safety to native organisms and the 

504 environment. Sessitch et al. (2019) [148] highlighted that one of the main difficulties in moving 

505 towards field application is that trial screenings are performed in a way that does not mimic real 

506 conditions. Hu et al. (2019) [62] used a portable DNA sequencer to detect plant pathogens and 

507 analyze the microbiome of infected wheat. They suggest that a combination of on-site and 

508 centralized sequencing approaches would, in the future, revolutionize the management of 

509 agricultural biosecurity and reduce crop losses.   

510 Other challenges, which will be explored in detail, in addition to improving the culturability 

511 of potential microbes, include combining different “omics” approaches towards a better 

512 understanding of the potential of microbiomes, the development of synthetic communities, and the 

513 identification of a global wheat core microbiome. These are important gaps that need to be 

514 addressed before microbiomes can be successfully and fully implemented in agriculture. 

515

516 4.1 Multidisciplinary approach

517

518 It is well known that a great variety of microbes are associated with crop plants. 

519 Conventionally, this interaction has been studied with a culture-based approach, often with the 

520 inoculation of a single microbial species. A better understanding of patterns of microbiome 

521 assemblage and manipulation is of fundamental importance for microbiome utilization. However, 

522 as these sequencing approaches are correlative, there remains a dependency on culture-based 

523 techniques for the successful application of microbes to the environment. In addition, it is desirable 

524 to obtain a genome sequence of a microbe of interest, and this is best achieved from a pure culture 

525 of a given microbe, as opposed to the computational assembly from metagenomes, where it can be 



526 difficult to accurately associate core and accessory genetic elements to a particular genome. Until 

527 recently only around 1% of bulk soil microbes and up to 10% of root-associated microbes were 

528 amenable to culture. However, dilution-to-extinction [149] (Song et al. 2009), the development of 

529 ichip [150] (Nichols et al. 2010), co-culturing, and other methods [151] (Stewart, 2012), have 

530 improved culture-based recovery of the soil and root-associated microbiome dramatically, thus the 

531 “1% culturability paradigm” needs to be revisited [152] (Martiny, 2019) and this is likely to 

532 facilitate the isolation of new species with important functions to benefit the plant host. As 

533 suggested by Schlaeppi and Bulgarelli (2015) [153], it might be useful to apply a combination of 

534 both culture-independent methods with culture-dependent methods to enable the development of 

535 inoculants towards a more reliable sustainable agriculture intensification. 16S rRNA gene and ITS 

536 amplicon analysis, shotgun metagenomics or metatranscriptomics could be used to detect changes 

537 in microbial communities, whereas cultivation techniques would be used to characterize the 

538 physiological properties of microorganisms. Although cultivation-based techniques present some 

539 limitations [36] (Kavamura et al. 2019), [154] Gutleben et al. (2018) suggest they are currently the 

540 most reliable way to validate ecological hypotheses. The combination of different methods has 

541 important implications for the field of microbial ecology [155] (VanInsberghe et al. 2013) and it 

542 has been demonstrated by [156] Armanhi et al. (2018). The taxa identified in the previous section 

543 could be used in the future for a targeted approach using culture-dependent methods coupled with 

544 culture-independent methods to enable the characterization and isolation of promising 

545 microorganisms for the development of synthetic communities (SynComs) will be further 

546 discussed in Section 4.3.

547 Additionally, the functional screening of microbial isolates using traditional culture-based 

548 methods focusing on the functions of single isolates are generally not high-throughput and have a 

549 low resolution. To overcome this, next-generation physiology approaches on microbial ecology 

550 studies to study the functions of microorganisms as communities in their native environment could 

551 be applied [157] (Hatzenpichler et al. 2020). In addition, the culturability of “unculturable” 

552 microbes must be improved either by developing new cultivation strategies or by refining the 

553 existing ones. 

554 Researchers should combine ecological studies, and database information on the 

555 physiology and biochemistry of target isolates to efficiently uncover phylogenetically and 

556 functionally new strains [158] Overmann et al. (2017). Data from amplicon and metagenomics 



557 sequencing are quite descriptive and should be combined with other “omics” data such as 

558 metatranscriptomics and metabolomics to obtain a holistic description of factors affecting the 

559 wheat microbiome. Additionally, as already discussed, culturomics [158] (Overmann et al. 2017) 

560 should be used to isolate potential microbial candidates, alongside with phenomics data [159] 

561 (Alcin-Albiac et al. 2020), where the metabolic and functional features of microbes are evaluated. 

562 Once isolates are obtained, single-cell genomics can be used for targeting genes of interest for 

563 classical genetics approaches, such as mutagenesis, deletion and complementation to prove the 

564 functional ability of the selected microbes. Finally, the effect of microbial inoculants on plants’ 

565 performance can be verified through metaproteomics (host-level) or metabolomics in the 

566 rhizosphere (Figure 3). Understanding how plant’s metabolites select different microbes is a field 

567 of research that has been receiving more attention. By identifying which root metabolites are 

568 responsible for the proliferation of specific microbes, root exudates can be purified or synthesized 

569 and used to increase the host’s ability to recruit a beneficial microbiome [160] (Qiu et al. 2019). 

570 However, several bottlenecks have been identified by Reuben et al. (2008) [161], such as the cost 

571 and technical constraints to detect different metabolites, the absence of a well-curated database 

572 and chemoinformatics tools to enable analysis and interpretation of collected data. In the future, if 

573 limitations related to techniques, analyses, and integration with other mentioned “omics” sciences 

574 are overcome, incorporating metabolomics studies into microbiome studies would enable 

575 engineering of the native soil microbiome for increased plant growth and performance under 

576 bespoke conditions.  

577



578
579 Figure 3. Proposed multidisciplinary framework for the successful use of microbiome in agriculture. Factors 
580 affecting the microbiome must be assessed through metagenomics (amplicon and shotgun), resulting in the description 
581 of the structure and diversity of microbial communities. Active microbial communities and genes should be assessed 
582 via metatranscriptomics. Additionally, culture-based methods should be used to recover isolates of interest 
583 (culturomics) and their functional and metabolic abilities evaluated by phenomics. Genomics can be used for targeting 
584 single cells or genes of interest using classical genetics approaches. And the effect of microbial inoculants on plant 
585 performance can be verified through metaproteomics (host-level) or metabolomics in the rhizosphere. Created with 
586 BioRender.com.
587

588 4.2. Identification of the real core microbiome

589

590 Describing the core microbiome of a healthy host would facilitate the design of synthetic 

591 microbial communities that are more likely to establish under specific conditions. However, 

592 translating our findings towards the development of new inoculants will require a further 

593 assessment of their culturability and functionality under desired conditions both in glasshouse and 

594 field trials. Additionally, future research should focus on a benchmarking of all publicly available 

595 wheat root microbiome datasets. This study would provide insights into the degree of microbial 



596 functional redundancy in these systems and whether a taxonomically based global core wheat root 

597 microbiome exists, regardless of anthropogenic, edaphic, environmental and host-related factors.

598

599 4.3 Synthetic communities (SynComs) and the development of inoculants

600

601 The studies conducted on the wheat microbiome have highlighted which microbial 

602 communities are commonly associated with wheat and the factors responsible for the assembly of 

603 these communities. They might also offer hints to the identification of core representatives with 

604 possible plant growth-promoting traits, which could be used as inoculants or combined with other 

605 microbes into SynComs, which are artificially created by co-culturing two or more microbial 

606 strains in a specific medium [162] (Großkopf and Soyer 2014). Normally, they are designed for 

607 hypothesis testing and the selection of the members of these communities can be based on 

608 phylogeny, classification, networks or specific functions [163] (Vorholt et al. 2017), always taking 

609 into account the ecological interactions among the different taxa [162] (Großkopf and Soyer 2014).  

610 Microbial inoculants combine a native population of microbes with several kinds of compounds, 

611 such as plant hormones and growth regulators which are produced and released during 

612 fermentation [164] (Cassán et al. 2009). Ahemad and Khan (2011) [165] state that the exploitation 

613 of bacteria with multiple plant growth-promoting traits is beneficial, however, finding one 

614 bacterial strain with all desirable characteristics with the ability to colonize a variety of plant hosts 

615 and soil types is unlikely [166] (Kavamura et al. 2013), making the use of mixtures of microbes, 

616 also known as synthetic communities a good alternative. García-Jiménez et al. (2021) [167] point 

617 out there are important considerations when designing SynComs such as how the communities 

618 will be structured to ensure stability and the desired output. It is therefore essential to understand 

619 the compatibility among the different members of a given synthetic community so that when co-

620 inoculated they benefit the host, are not antagonistic toward one another, and are resilient when 

621 challenged with biotic and/or abiotic stresses. Although several studies have demonstrated the 

622 potential of different microbes to improve plant performance under different conditions, others 

623 have shown microbial inoculants to give poor results. As such their successful deployment requires 

624 further methodological, technical, and theoretical advances before they can be considered as a 

625 reliable alternative to agrochemicals [160] (Qiu et al. 2019). 

626



627 5. Summary and Outlook 

628

629 Advances in the understanding of structure, diversity and functions of microbial 

630 communities associated with wheat and accompanying factors have been achieved in the last 

631 decades. We foresee great potential of microbiome manipulation for biostimulation of beneficial 

632 members of the indigenous microbiome to boost host performance under abiotic and biotic 

633 stresses. Identifying core microbiome function and the microbial genera responsible for these 

634 functions would reveal microbial targets for in situ manipulation. Alternatively, another approach 

635 would be the bioinoculation, addition of PGPR as microbial formulations (synthetic communities), 

636 however it is clear that a better understanding of bespoke conditions for successful establishment 

637 of inoculants is still required. 
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