133 research outputs found
Recommended from our members
Use of creative tools, technologies, processes and practices in the sectors of Art, Media, and Architecture: State-of the-Art and desired future scenarios
The aim of the paper is to analyse and present the preliminary findings of the EU FP7 funded CRe-AM project for the Art, Media, and Architecture sectors. This project bridges communities of technology providers and innovators with the creative industries, with the aim to build sector-specific dynamic roadmaps for the future of the European creative industries by examining the current state-of-the-art tools, technologies, processes, and practices supporting the creative process against the future scenarios envisioned by stakeholders in these sectors.This work was carried out as part of CRe-AM project, which is supported by European Commission (grant agreement n°612451)
Contrasting patterns of individual specialization and trophic coupling in two marine apex predators
1. Apex predators are often assumed to be dietary generalists and, by feeding on prey from multiple basal nutrient sources, serve to couple discrete food webs. But there is increasing evidence that individual level dietary specialization may be common in many species, and this has not been investigated for many marine apex predators.
2. Because of their position at or near the top of many marine food webs, and the possibility that they can affect populations of their prey and induce trophic cascades, it is important to understand patterns of dietary specialization in shark populations.
3. Stable isotope values from body tissues with different turnover rates were used to quantify patterns of individual specialization in two species of ‘generalist’ sharks (bull sharks, Carcharhinus leucas, and tiger sharks, Galeocerdo cuvier).
4. Despite wide population-level isotopic niche breadths in both species, isotopic values of individual tiger sharks varied across tissues with different turnover rates. The population niche breadth was explained mostly by variation within individuals suggesting tiger sharks are true generalists. In contrast, isotope values of individual bull sharks were stable through time and their wide population level niche breadth was explained by variation among specialist individuals.
5. Relative resource abundance and spatial variation in food-predation risk tradeoffs may explain the differences in patterns of specialization between shark species.
6. The differences in individual dietary specialization between tiger sharks and bull sharks results in different functional roles in coupling or compartmentalizing distinct food webs.
7. Individual specialization may be an important feature of trophic dynamics of highly mobile marine top predators and should be explicitly considered in studies of marine food webs and the ecological role of top predators
Size-based variation in intertissue comparisons of stable carbon and nitrogen isotopic signatures of bull sharks (Carcharhinus leucas) and tiger sharks (Galeocerdo cuvier)
Stable isotopes are important tools for understanding the trophic roles of elasmobranchs. However, whether different tissues provide consistent stable isotope values within an individual are largely unknown. To address this, the relationships among carbon and nitrogen isotope values were quantified for blood, muscle, and fin from juvenile bull sharks (Carcharhinus leucas) and blood and fin from large tiger sharks (Galeocerdo cuvier) collected in two different ecosystems. We also investigated the relationship between shark size and the magnitude of differences in isotopic values between tissues. Isotope values were significantly positively correlated for all paired tissue comparisons, but R2 values were much higher for δ13C than for δ15N. Paired differences between isotopic values of tissues were relatively small but varied significantly with shark total length, suggesting that shark size can be an important factor influencing the magnitude of differences in isotope values of different tissues. For studies of juvenile sharks, care should be taken in using slow turnover tissues like muscle and fin, because they may retain a maternal signature for an extended time. Although correlations were relatively strong, results suggest that correction factors should be generated for the desired study species and may only allow coarse-scale comparisons between studies using different tissue types
Thioglycosides Are efficient metabolic decoys of glycosylation that reduce selectin dependent leukocyte adhesion
Metabolic decoys are synthetic analogs of naturally occurring biosynthetic acceptors. These compounds divert cellular biosynthetic pathways by acting as artificial substrates that usurp the activity of natural enzymes. While O-linked glycosides are common, they are only partially effective even at millimolar concentrations. In contrast, we report that N-acetylglucosamine (GlcNAc) incorporated into various thioglycosides robustly truncate cell surface N- and O-linked glycan biosynthesis at 10-100 μM concentrations. The >10-fold greater inhibition is in part due to the resistance of thioglycosides to hydrolysis by intracellular hexosaminidases. The thioglycosides reduce β-galactose incorporation into lactosamine chains, cell surface sialyl Lewis-X expression, and leukocyte rolling on selectin substrates including inflamed endothelial cells under fluid shear. Treatment of granulocytes with thioglycosides prior to infusion into mouse inhibited neutrophil homing to sites of acute inflammation and bone marrow by ∼80%-90%. Overall, thioglycosides represent an easy to synthesize class of efficient metabolic inhibitors or decoys. They reduce N-/O-linked glycan biosynthesis and inflammatory leukocyte accumulation
First evidence of white sharks, Carcharodon carcharias, in the tongue of the ocean, central Bahamas
The white shark, Carcharodon carcharias, is an iconic apex predator, playing an important ecological role across its range. Persistent bycatch and overfishing led to white shark declines, but recent studies in the North Western Atlantic (NWA) revealed evidence for regional recovery, and highlighted the importance of Southeastern Florida and the Gulf of Mexico as overwintering grounds for maturing white sharks. However, despite its proximity to Florida and comparably productive habitats, records of white sharks in The Bahamas are extremely rare, with a comprehensive survey of sightings and captures describing only one white shark between 1800 - 2010. Here, we reveal acoustic tracking detections of ten white sharks from 2020 - 2024 along the western edge of the Tongue of the Ocean off Central Andros Island, The Bahamas. White sharks were originally tagged off the coast of the United States and Canada, and detected off Andros Island, The Bahamas from November-May. White sharks were detected along the drop-off zone of the reef at ca. 25 m, exclusively between dusk and dawn, with the number of detections suggesting transient behavior. These findings expand our knowledge of white shark distribution in the NWA, highlighting data gaps in The Bahamas and underlining the importance of collaborative protective measures for species recovery
Thioglycosides Are Efficient Metabolic Decoys of Glycosylation that Reduce Selectin Dependent Leukocyte Adhesion
© 2018 Elsevier Ltd Small-molecule inhibitors of glycosylation can be applied in basic science studies, and clinical investigations as anti-inflammatory, anti-metastatic, and anti-viral therapies. This article demonstrates that thioglycosides represent a class of potent metabolic decoys that resist hydrolysis, and block E-selectin-dependent leukocyte adhesion in models of inflammation
Two terpene synthases are responsible for the major sesquiterpenes emitted from the flowers of kiwifruit (Actinidia deliciosa)
Kiwifruit vines rely on bees for pollen transfer between spatially separated male and female individuals and require synchronized flowering to ensure pollination. Volatile terpene compounds, which are important cues for insect pollinator attraction, were studied by dynamic headspace sampling in the major green-fleshed kiwifruit (Actinidia deliciosa) cultivar ‘Hayward’ and its male pollinator ‘Chieftain’. Terpene volatile levels showed a profile dominated by the sesquiterpenes α-farnesene and germacrene D. These two compounds were emitted by all floral tissues and could be observed throughout the day, with lower levels at night. The monoterpene (E)-β-ocimene was also detected in flowers but was emitted predominantly during the day and only from petal tissue. Using a functional genomics approach, two terpene synthase (TPS) genes were isolated from a ‘Hayward’ petal EST library. Bacterial expression and transient in planta data combined with analysis by enantioselective gas chromatography revealed that one TPS produced primarily (E,E)-α-farnesene and small amounts of (E)-β-ocimene, whereas the second TPS produced primarily (+)-germacrene D. Subcellular localization using GFP fusions showed that both enzymes were localized in the cytoplasm, the site for sesquiterpene production. Real-time PCR analysis revealed that both TPS genes were expressed in the same tissues and at the same times as the corresponding floral volatiles. The results indicate that two genes can account for the major floral sesquiterpene volatiles observed in both male and female A. deliciosa flowers
A comparison of the seasonal movements of tiger sharks and green turtles provides insight into their predator-prey relationship
During the reproductive season, sea turtles use a restricted area in the vicinity of their nesting beaches, making them vulnerable to predation. At Raine Island (Australia), the highest density green turtle Chelonia mydas rookery in the world, tiger sharks Galeocerdo cuvier have been observed to feed on green turtles, and it has been suggested that they may specialise on such air-breathing prey. However there is little information with which to examine this hypothesis. We compared the spatial and temporal components of movement behaviour of these two potentially interacting species in order to provide insight into the predator-prey relationship. Specifically, we tested the hypothesis that tiger shark movements are more concentrated at Raine Island during the green turtle nesting season than outside the turtle nesting season when turtles are not concentrated at Raine Island. Turtles showed area-restricted search behaviour around Raine Island for ~3–4 months during the nesting period (November–February). This was followed by direct movement (transit) to putative foraging grounds mostly in the Torres Straight where they switched to area-restricted search mode again, and remained resident for the remainder of the deployment (53–304 days). In contrast, tiger sharks displayed high spatial and temporal variation in movement behaviour which was not closely linked to the movement behaviour of green turtles or recognised turtle foraging grounds. On average, tiger sharks were concentrated around Raine Island throughout the year. While information on diet is required to determine whether tiger sharks are turtle specialists our results support the hypothesis that they target this predictable and plentiful prey during turtle nesting season, but they might not focus on this less predictable food source outside the nesting season
Kowakare: A New Perspective on the Development of Early Mother–Offspring Relationship
The mother–offspring relationship has components of both positivity and negativity. Kowakare is a new concept introduced to explain an adaptive function of the negativity in the early mother-offspring relationship. Kowakare is the psycho-somatic development of the relationship as the process of accumulation in the otherness of offspring. Early human Kowakare has two frameworks, biological inter-body antagonism and socio-cultural allomothering compensating the antagonism. Some features of feeding/weaning, parental aversion to offspring’s bodily products, and transition from dyad to triad relationship (proto–triad relationship) in tactile play are discussed. Early human Kowakare is promoted by allomothering with the nested systems of objects/persons/institutions as interfaces between mother and offspring. Kowakare makes mother–offspring relationship a mutually autonomous and cooperative companionship
The Influence of Coastal Access on Isotope Variation in Icelandic Arctic Foxes
To quantify the ecological effects of predator populations, it is important to evaluate how population-level specializations are dictated by intra- versus inter-individual dietary variation. Coastal habitats contain prey from the terrestrial biome, the marine biome and prey confined to the coastal region. Such habitats have therefore been suggested to better support predator populations compared to habitats without coastal access. We used stable isotope data on a small generalist predator, the arctic fox, to infer dietary strategies between adult and juvenile individuals with and without coastal access on Iceland. Our results suggest that foxes in coastal habitats exhibited a broader isotope niche breadth compared to foxes in inland habitats. This broader niche was related to a greater diversity of individual strategies rather than to a uniform increase in individual niche breadth or by individuals retaining their specialization but increasing their niche differentiation. Juveniles in coastal habitats exhibited a narrower isotope niche breadth compared to both adults and juveniles in inland habitats, and juveniles in inland habitats inhabited a lower proportion of their total isotope niche compared to adults and juveniles from coastal habitats. Juveniles in both habitats exhibited lower intra-individual variation compared to adults. Based on these results, we suggest that foxes in both habitats were highly selective with respect to the resources they used to feed offspring, but that foxes in coastal habitats preferentially utilized marine resources for this purpose. We stress that coastal habitats should be regarded as high priority areas for conservation of generalist predators as they appear to offer a wide variety of dietary options that allow for greater flexibility in dietary strategies
- …