246 research outputs found

    Star formation feedback and metal enrichment by SN Ia and SN II in dwarf spheroidal galaxies: the case of Draco

    Full text link
    We present 3D hydrodynamical simulations aimed to study the dynamical and chemical evolution of the interstellar medium in dwarf spheroidal galaxies. This evolution is driven by the explosions of Type II and Type Ia supernovae, whose different contribution is explicity taken into account in our models. We compare our results with detailed observations of the Draco galaxy. We assume star formation histories consisting of a number of instantaneous burst separated by quiescent periods. Because of the large effectiveness of the radiative losses and the extended dark matter halo, no galactic wind develops, despite the total energy released by the supernovae is much larger than the binding energy of the gas. This explains why the galaxy is able to form stars for a long period (> 3 Gyr), consistently with observations. In this picture, the end of the star formation and gas removal must result from external mechanisms, such as ram pressure and/or tidal interaction with the Galaxy. The metallicity distributions of the stars found in our models agree very well with the observed one. We find a mean value =-1.65 with a spread of ~1.5 dex. The chemical properties of the stars derive by the different temporal evolution between Type Ia and Type II supernova rate, and by the different mixing of the metals produced by the two types of SNe. We reproduce successfully the observed [O/Fe]-[Fe/H] diagram. However, our interpretation of this diagram differs from that generally adopted by previous chemical models. In fact, we find that the chemical properties of the stars derive, besides the different temporal evolution of the SNe II and SNe Ia rates, from the spatial inhomogeneous chemical enrichment due to the different dynamical behaviour between the remnants of the two types of supernovae.Comment: 20 pages, 14 figures (1 added), MNRAS accepted, Minor changes following referee repor

    Modeling the chemical evolution of Omega Centauri using three-dimensional hydrodynamical simulations

    Full text link
    We present a hydrodynamical and chemical model for the globular cluster Omega Cen, under the assumption that it is the remnant of an ancient dwarf spheroidal galaxy (dSph), the bulk of which was disrupted and accreted by our Galaxy ~10 Gyr ago. We highlight the very different roles played by Type II and Type Ia supernovae (SNe) in the chemical enrichment of the inner regions of the putative parent dSph. While the SNe II pollute the interstellar medium rather uniformly, the SNe Ia ejecta may remain confined inside dense pockets of gas as long as succesive SNe II explosions spread them out. Stars forming in such pockets have lower alpha-to-iron ratios than the stars forming elsewhere. Owing to the inhomogeneous pollution by SNe Ia, the metal distribution of the stars in the central region differs substantially from that of the main population of the dwarf galaxy, and resembles that observed in Omega Cen. This inhomogeneous mixing is also responsible for a radial segregation of iron-rich stars with depleted [alpha/Fe] ratios, as observed in some dSphs. Assuming a star formation history of ~1.5 Gyr, our model succeeds in reproducing both the iron and calcium distributions observed in Omega Cen and the main features observed in the empirical alpha/Fe versus Fe/H plane. Finally, our model reproduces the overall spread of the color-magnitude diagram, but fails in reproducing the morphology of the SGB-a and the double morphology of the main sequence. However, the inhomogeneous pollution reduces (but does not eliminate) the need for a significantly enhanced helium abundance to explain the anomalous position of the blue main sequence. Further models taking into account the dynamical interaction of the parent dwarf galaxy with the Milky Way and the effect of AGB pollution will be required.Comment: 15 pages, 13 figures. MNRAS accepte

    Airfoil self-noise and prediction

    Get PDF
    A prediction method is developed for the self-generated noise of an airfoil blade encountering smooth flow. The prediction methods for the individual self-noise mechanisms are semiempirical and are based on previous theoretical studies and data obtained from tests of two- and three-dimensional airfoil blade sections. The self-noise mechanisms are due to specific boundary-layer phenomena, that is, the boundary-layer turbulence passing the trailing edge, separated-boundary-layer and stalled flow over an airfoil, vortex shedding due to laminar boundary layer instabilities, vortex shedding from blunt trailing edges, and the turbulent vortex flow existing near the tip of lifting blades. The predictions are compared successfully with published data from three self-noise studies of different airfoil shapes. An application of the prediction method is reported for a large scale-model helicopter rotor, and the predictions compared well with experimental broadband noise measurements. A computer code of the method is given

    Helicopter main-rotor noise: Determination of source contributions using scaled model data

    Get PDF
    Acoustic data from a test of a 40 percent model MBB BO-105 helicopter main rotor are scaled to equivalent full-scale flyover cases. The test was conducted in the anechoic open test section of the German-Dutch Windtunnel (DNW). The measured data are in the form of acoustic pressure time histories and spectra from two out-of-flow microphones underneath and foward of the model. These are scaled to correspond to measurements made at locations 150 m below the flight path of a full-scale rotor. For the scaled data, a detailed analysis is given for the identification in the data of the noise contributions from different rotor noise sources. Key results include a component breakdown of the noise contributions, in terms of noise criteria calculations of a weighted sound pressure level (dBA) and perceived noise level (PNL), as functions of rotor advance ratio and descent angle. It is shown for the scaled rotor that, during descent, impulsive blade-vortex interaction (BVI) noise is the dominant contributor to the noise. In level flight and mild climb, broadband blade-turbulent wake interaction (BWI) noise is dominant due to the absence of BVI activity. At high climb angles, BWI is reduced and self-noise from blade boundary-layer turbulence becomes the most prominent

    Wake Geometry Effects on Rotor Blade-Vortex Interaction Noise Directivity

    Get PDF
    Acoustic measurements from a model rotor wind tunnel test are presented which show that the directionality of rotor blade vortex interaction (BVI) noise is strongly dependent on the rotor advance ratio and disk attitude. A rotor free wake analysis is used to show that the general locus of interactions on the rotor disk is also strongly dependent on advance ratio and disk attitude. A comparison of the changing directionality of the BVI noise with changes in the interaction locations shows that the strongest noise radiation occurs in the direction of motion normal to the blade span at the time of interaction, for both advancing and retreating side BVI. For advancing side interactions, the BVI radiation angle down from the tip-path plane appears relatively insensitive to rotor operating condition and is typically between 40 and 55 deg below the disk. However, the azimuthal radiation direction shows a clear trend with descent speed, moving towards the right of the flight path with increasing descent speed. The movement of the strongest radiation direction is attributed to the movement of the interaction locations on the rotor disk with increasing descent speed

    Frequency response calibration of recess-mounted pressure transducers

    Get PDF
    A technique is described for measuring the frequency response of pressure transducers mounted inside a model, where a narrow pipette leads to an orifice at the surface. An acoustic driver is mounted to a small chamber which has an opening at the opposite end with an O-ring seal to place over the orifice. A 3.18 mm (1/8 inch) reference microphone is mounted to one side of the chamber. The acoustic driver receives an input of white noise, and the transducer and reference microphone outputs are compared to obtain the frequency response of the pressure transducer. Selected results are presented in the form of power spectra for both the transducer and the reference, as well as the amplitude variation and phase shift between the two signals as a function of frequency. The effect of pipette length and the use of this technique for identifying both blocked orifices and faulty transducers are described

    About the evolution of Dwarf Spheroidal Galaxies

    Get PDF
    We present 3D hydrodynamic simulations aimed at studying the dynamical and chemical evolution of the interstellar medium in dwarf spheroidal galaxies. This evolution is driven by the explosions of Type II and Type Ia supernovae, whose different contribution is explicitly taken into account in our models. We compare our results with avaiable properties of the Draco galaxy. Despite the huge amount of energy released by SNe explosions, in our model the galaxy is able to retain most of the gas allowing a long period (>3> 3 Gyr) of star formation, consistent with the star formation history derived by observations. The stellar [Fe/H] distribution found in our model matches very well the observed one. The chemical properties of the stars derive from the different temporal evolution between Type Ia and Type II supernova rate, and from the different mixing of the metals produced by the two types of supernovae. We reproduce successfully the observed [O/Fe]-[Fe/H] diagram.Comment: 6 pages, 2 figures, to appear in the Proceedings of the CRAL conference "Chemodynamics: from first stars to local galaxies", Lyon, France, 10-14 July 200

    Three-dimensional simulations of the interstellar medium in dwarf galaxies - II. Galactic wind

    Full text link
    We study the hydrodynamical evolution of galactic winds in disky dwarf galaxies moving through an intergalactic medium. In agreement with previous investigations,we find that when the ram pressure stripping does not disrupt the ISM, it usually has a negligible effect on the galactic wind dynamics. Only when the IGM ram pressure is comparable to the central ISM thermal pressure the stripping and the superwind influence each other increasing the gas removal rate. In this case several parameters regulate the ISM ejection process, as the original distribution of the ISM and the geometry of the IGM-galaxy interaction. When the ISM is not removed by the ram pressure or the wind, it loses memory of the starburst episode and recovers almost its pre-burst distribution in a timescale of 50-200 Myr. After this time another star formation episode becomes, in principle, possible. Evidently, galactic winds are consistent with a recurrent bursts star formation history. Contrary to the ISM content, the amount of the metal-rich ejecta retained by the galaxy is more sensitive to the ram pressure action. Part of the ejecta is first trapped in a low density, extraplanar gas produced by the IGM-ISM interaction, and then pushed back onto the galactic disc. The amount of trapped metals in a moving galaxy may be up to three times larger than in a galaxy at rest. This prediction may be tested comparing metallicity of dwarf galaxies in nearby poor clusters or groups, such as Virgo or Fornax, with the field counterpart. The sensitivity of the metal entrapment efficiency on the geometry of the interaction may explain part of the observed scatter in the metallicity-luminosity relation for dwarf galaxies.Comment: Accepted MNRAS, 9 color figure
    corecore