95 research outputs found

    Protective Effects of Gynostemma pentaphyllum (var. Ginpent) against Lipopolysaccharide-Induced Inflammation and Motor Alteration in Mice

    Get PDF
    Gynostemma pentaphyllum (var. Ginpent) (GP) is a variety of Cucurbit with anti-inflammatory and antioxidant effects in patients. In this manuscript, the main components present in the dry extract of GP have been identified using Ultra High Performance Liquid Chromatography quadrupole-time-of-flight mass spectrometry (UHPLC/Q-TOF-MS). In addition, the anti-inflammatory action of GP was evaluated in animal models with acute peripheral inflammation and motor alteration induced by lipopolysaccharide. The results showed that GP dry extract is rich in secondary metabolites with potential antioxidant and anti-inflammatory properties. We found that the treatment with GP induced a recovery of motor function measured with the rotarod test and pole test, and a reduction in inflammatory cytokines such as interleukin-1\u3b2 and interleukin-6 measured with the ELISA test. The data collected in this study on the effects of GP in in vivo models may help integrate the therapeutic strategies of inflammatory-based disorders

    Different Seasonal Collections of Ficus carica L. Leaves Diversely Modulate Lipid Metabolism and Adipogenesis in 3T3-L1 Adipocytes

    Get PDF
    Due to the high prevalence of obesity and type 2 diabetes, adipogenesis dysfunction and metabolic disorders are common features in the elderly population. Thus, the identification of novel compounds with anti-adipogenic and lipolytic effects is highly desirable to reduce diabetes complications. Plants represent an important source of bioactive compounds. To date, the antidiabetic potential of several traditional plants has been reported, among which Ficus carica L. is one of the most promising. Considering that plant metabolome changes in response to a number of factors including seasonality, the aim of this study was to evaluate whether Ficus carica leaves extracts collected in autumn (FCa) and spring (FCs) differently modulate lipid metabolism and adipogenesis in 3T3-L1 adipocytes. The H-1-NMR profile of the extracts showed that FCs have a higher content of caffeic acid derivatives, glucose, and sucrose than FCa. In contrast, FCa showed a higher concentration of malic acid and furanocoumarins, identified as psoralen and bergapten. In vitro testing showed that only FCa treatments were able to significantly decrease the lipid content (Ctrl vs. FCa 25 mu g/mL, 50 mu g/mL and 80 mu g/mL; p < 0.05, p < 0.01 and p < 0.001, respectively). Furthermore, FCa treatments were able to downregulate the transcriptional pathway of adipogenesis and insulin sensitivity in 3T3-L1 adipocytes. In more detail, FCa 80 mu g/mL significantly decreased the gene expression of PPAR gamma (p < 0.05), C/EBP alpha (p < 0.05), Leptin (p < 0.0001), adiponectin (p < 0.05) and GLUT4 (p < 0.01). In conclusion, this study further supports an in-depth investigation of F. carica leaves extracts as a promising source of active compounds useful for targeting obesity and diabetes

    Risk and clinical-outcome indicators of delirium in an emergency department intermediate care unit (EDIMCU) : an observational prospective study

    Get PDF
    We are thankful to the staff at the EDIMCU of Hospital de Braga.Background Identification of delirium in emergency departments (ED) is often underestimated; within EDs, studies on delirium assessment and relation with patient outcome in Intermediate Care Units (IMCU) appear missing in European hospital settings. Here we aimed to determine delirium prevalence in an EDIMCU (Hospital de Braga, Braga, Portugal) and assessed routine biochemical parameters that might be delirium indicators. Methods The study was prospective and observational. Sedation level was assessed via the Richmond Agitation-Sedation Scale and delirium status by the Confusion Assessment Method for the ICU. Information collected included age and gender, admission type, Charlson Comorbidity Index combined condition score (Charlson score), systemic inflammatory response syndrome criteria (SIRS), biochemical parameters (blood concentration of urea nitrogen, creatinine, hemoglobin, sodium and potassium, arterial blood gases, and other parameters as needed depending on clinical diagnosis) and EDIMCU length of stay (LOS). Statistical analyses were performed as appropriate to determine if baseline features differed between the ‘Delirium’ and ‘No Delirium’ groups. Multivariate logistic regression was performed to assess the effect of delirium on the 1-month outcome. Results Inclusion and exclusion criteria were met in 283 patients; 238 were evaluated at 1-month for outcome follow-up after EDIMCU discharge (“good” recovery without complications requiring hospitalization or institutionalization; “poor” institutionalization in permanent care-units/assisted-living or death). Delirium was diagnosed in 20.1% patients and was significantly associated with longer EDIMCU LOS. At admission, Delirium patients were significantly older and had significantly higher blood urea, creatinine and osmolarity levels and significantly lower hemoglobin levels, when compared with No Delirium patients. Delirium was an independent predictor of increased EDIMCU LOS (odds ratio 3.65, 95% CI 1.97-6.75) and poor outcome at 1-month after discharge (odds ratio 3.51, CI 1.84-6.70), adjusted for age, gender, admission type, presence of SIRS criteria, Charlson score and osmolarity at admission. Conclusions In an EDIMCU setting, delirium was associated with longer LOS and poor outcome at1-month post-discharge. Altogether, findings support the need for delirium screening and management in emergency settings.NCS is supported by the post-doctoral fellowship UMINHO/BPD/013/2011 by the European Commission (FP7) “SwitchBox” Project (Contract HEALTH-F2-2010-259772)

    Using Structure to Explore the Sequence Alignment Space of Remote Homologs

    Get PDF
    Protein structure modeling by homology requires an accurate sequence alignment between the query protein and its structural template. However, sequence alignment methods based on dynamic programming (DP) are typically unable to generate accurate alignments for remote sequence homologs, thus limiting the applicability of modeling methods. A central problem is that the alignment that is “optimal” in terms of the DP score does not necessarily correspond to the alignment that produces the most accurate structural model. That is, the correct alignment based on structural superposition will generally have a lower score than the optimal alignment obtained from sequence. Variations of the DP algorithm have been developed that generate alternative alignments that are “suboptimal” in terms of the DP score, but these still encounter difficulties in detecting the correct structural alignment. We present here a new alternative sequence alignment method that relies heavily on the structure of the template. By initially aligning the query sequence to individual fragments in secondary structure elements and combining high-scoring fragments that pass basic tests for “modelability”, we can generate accurate alignments within a small ensemble. Our results suggest that the set of sequences that can currently be modeled by homology can be greatly extended

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Evaluating early administration of the hydroxymethylglutaryl-CoA reductase inhibitor simvastatin in the prevention and treatment of delirium in critically ill ventilated patients (MoDUS trial): Study protocol for a randomized controlled trial

    Get PDF
    This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.Abstract Background The incidence of delirium in ventilated patients is estimated at up to 82%, and it is associated with longer intensive care and hospital stays, and long-term cognitive impairment and mortality. The pathophysiology of delirium has been linked with inflammation and neuronal apoptosis. Simvastatin has pleiotropic properties; it penetrates the brain and, as well as reducing cholesterol, reduces inflammation when used at clinically relevant doses over the short term. This is a single centre randomised, controlled trial which aims to test the hypothesis that treatment with simvastatin will modify delirium incidence and outcomes. Methods/Design The ongoing study will include 142 adults admitted to the Watford General Hospital Intensive Care Unit who require mechanical ventilation in the first 72 hours of admission. The primary outcome is the number of delirium- and coma-free days in the first 14 days. Secondary outcomes include incidence of delirium, delirium- and coma-free days in the first 28 days, days in delirium and in coma at 14 and 28 days, number of ventilator-free days at 28 days, length of critical care and hospital stay, mortality, cognitive decline and healthcare resource use. Informed consent will be taken from patient’s consultee before randomisation to receive either simvastatin (80 mg) or placebo once daily. Daily data will be recorded until day 28 after randomisation or until discharge from the ICU if sooner. Surviving patients will be followed up on at six months from discharge. Plasma and urine samples will be taken to investigate the biological effect of simvastatin on systemic markers of inflammation, as related to the number of delirium- and coma-free days, and the potential of cholinesterase activity and beta-amyloid as predictors of the risk of delirium and long-term cognitive impairment. Discussion This trial will test the efficacy of simvastatin on reducing delirium in the critically ill. If patients receiving the statin show a reduced number of days in delirium compared with the placebo group, the inflammatory theory implicated in the pathogenesis of delirium will be strengthened. Trial registration The trial was registered with the International Standard Randomised Controlled Trial Registry (ISRCTN89079989) on 26 March 2013.Peer reviewe

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Protective Effects of Gynostemma pentaphyllum (var. Ginpent) against Lipopolysaccharide-Induced Inflammation and Motor Alteration in Mice

    Get PDF
    Gynostemma pentaphyllum (var. Ginpent) (GP) is a variety of Cucurbit with anti-inflammatory and antioxidant effects in patients. In this manuscript, the main components present in the dry extract of GP have been identified using Ultra High Performance Liquid Chromatography quadrupole-time-of-flight mass spectrometry (UHPLC/Q-TOF-MS). In addition, the anti-inflammatory action of GP was evaluated in animal models with acute peripheral inflammation and motor alteration induced by lipopolysaccharide. The results showed that GP dry extract is rich in secondary metabolites with potential antioxidant and anti-inflammatory properties. We found that the treatment with GP induced a recovery of motor function measured with the rotarod test and pole test, and a reduction in inflammatory cytokines such as interleukin-1β and interleukin-6 measured with the ELISA test. The data collected in this study on the effects of GP in in vivo models may help integrate the therapeutic strategies of inflammatory-based disorders
    corecore