15,043 research outputs found

    Be Star Disk Models in Consistent Vertical Hydrostatic Equilibrium

    Full text link
    A popular model for the circumstellar disks of Be stars is that of a geometrically thin disk with a density in the equatorial plane that drops as a power law of distance from the star. It is usually assumed that the vertical structure of such a disk (in the direction parallel to the stellar rotation axis) is governed by the hydrostatic equilibrium set by the vertical component of the star's gravitational acceleration. Previous radiative equilibrium models for such disks have usually been computed assuming a fixed density structure. This introduces an inconsistency as the gas density is not allowed to respond to temperature changes and the resultant disk model is not in vertical, hydrostatic equilibrium. In this work, we modify the {\sc bedisk} code of \citet{sig07} so that it enforces a hydrostatic equilibrium consistent with the temperature solution. We compare the disk densities, temperatures, Hα\alpha line profiles, and near-IR excesses predicted by such models with those computed from models with a fixed density structure. We find that the fixed models can differ substantially from the consistent hydrostatic models when the disk density is high enough that the circumstellar disk develops a cool (T10,000T\lesssim10,000 K) equatorial region close to the parent star. Based on these new hydrostatic disks, we also predict an approximate relation between the (global) density-averaged disk temperature and the TeffT_{\rm eff} of the central star, covering the full range of central Be star spectral types.Comment: 25 pages; 11 figure

    Generation of optimum vertical profiles for an advanced flight management system

    Get PDF
    Algorithms for generating minimum fuel or minimum cost vertical profiles are derived and examined. The option for fixing the time of flight is included in the concepts developed. These algorithms form the basis for the design of an advanced on-board flight management system. The variations in the optimum vertical profiles (resulting from these concepts) due to variations in wind, takeoff mass, and range-to-destination are presented. Fuel savings due to optimum climb, free cruise altitude, and absorbing delays enroute are examined

    Quantitative analysis of ruminal methanogenic microbial populations in beef cattle divergent in phenotypic residual feed intake (RFI) offered contrasting diets

    Get PDF
    peer-reviewedBackground Methane (CH4) emissions in cattle are an undesirable end product of rumen methanogenic fermentative activity as they are associated not only with negative environmental impacts but also with reduced host feed efficiency. The aim of this study was to quantify total and specific rumen microbial methanogenic populations in beef cattle divergently selected for residual feed intake (RFI) while offered (i) a low energy high forage (HF) diet followed by (ii) a high energy low forage (LF) diet. Ruminal fluid was collected from 14 high (H) and 14 low (L) RFI animals across both dietary periods. Quantitative real time PCR (qRT-PCR) analysis was conducted to quantify the abundance of total and specific rumen methanogenic microbes. Spearman correlation analysis was used to investigate the association between the relative abundance of methanogens and animal performance, rumen fermentation variables and diet digestibility. Results Abundance of methanogens, did not differ between RFI phenotypes. However, relative abundance of total and specific methanogen species was affected (P < 0.05) by diet type, with greater abundance observed while animals were offered the LF compared to the HF diet. Conclusions These findings suggest that differences in abundance of specific rumen methanogen species may not contribute to variation in CH4 emissions between efficient and inefficient animals, however dietary manipulation can influence the abundance of total and specific methanogen species.Funding for the development and main work of this research was provided under the National Development Plan, through the Research Stimulus Fund, administered by the Department of Agriculture, Fisheries & Food, Ireland RSF 05 224

    Wireless recording of the calls of Rousettus aegyptiacus and their reproduction using electrostatic transducers

    Get PDF
    Bats are capable of imaging their surroundings in great detail using echolocation. To apply similar methods to human engineering systems requires the capability to measure and recreate the signals used, and to understand the processing applied to returning echoes. In this work, the emitted and reflected echolocation signals of Rousettus aegyptiacus are recorded while the bat is in flight, using a wireless sensor mounted on the bat. The sensor is designed to replicate the acoustic gain control which bats are known to use, applying a gain to returning echoes that is dependent on the incurred time delay. Employing this technique allows emitted and reflected echolocation calls, which have a wide dynamic range, to be recorded. The recorded echoes demonstrate the complexity of environment reconstruction using echolocation. The sensor is also used to make accurate recordings of the emitted calls, and these calls are recreated in the laboratory using custom-built wideband electrostatic transducers, allied with a spectral equalization technique. This technique is further demonstrated by recreating multi-harmonic bioinspired FM chirps. The ability to record and accurately synthesize echolocation calls enables the exploitation of biological signals in human engineering systems for sonar, materials characterization and imaging

    Effect of genotype on duodenal expression of nutrient transporter genes in dairy cows

    Get PDF
    peer-reviewedBackground Studies have shown clear differences between dairy breeds in their feed intake and production efficiencies. The duodenum is critical in the coordination of digestion and absorption of nutrients. This study examined gene transcript abundance of important classes of nutrient transporters in the duodenum of non lactating dairy cows of different feed efficiency potential, namely Holstein-Friesian (HF), Jersey (JE) and their F1 hybrid. Duodenal epithelial tissue was collected at slaughter and stored at -80°C. Total RNA was extracted from tissue and reverse transcribed to generate cDNA. Gene expression of the following transporters, namely nucleoside; amino acid; sugar; mineral; and lipid transporters was measured using quantitative real-time RT-PCR. Data were statistically analysed using mixed models ANOVA in SAS. Orthogonal contrasts were used to test for potential heterotic effects and spearman correlation coefficients calculated to determine potential associations amongst gene expression values and production efficiency variables. Results While there were no direct effects of genotype on expression values for any of the genes examined, there was evidence for a heterotic effect (P < 0.05) on ABCG8, in the form of increased expression in the F1 genotype compared to either of the two parent breeds. Additionally, a tendency for increased expression of the amino acid transporters, SLC3A1 (P = 0.072), SLC3A2 (P = 0.081) and SLC6A14 (P = 0.072) was also evident in the F1 genotype. A negative (P < 0.05) association was identified between the expression of the glucose transporter gene SLC5A1 and total lactational milk solids yield, corrected for body weight. Positive correlations (P < 0.05) were also observed between the expression values of genes involved in common transporter roles. Conclusion This study suggests that differences in the expression of sterol and amino acid transporters in the duodenum could contribute towards the documented differences in feed efficiency between HF, JE and their F1 hybrid. Furthermore, positive associations between the expression of genes involved in common transporter roles suggest that these may be co-regulated. The study identifies potential candidates for investigation of genetic variants regulating nutrient transport and absorption in the duodenum in dairy cows, which may be incorporated into future breeding programmes

    Crystallinity versus mass-loss rate in Asymptotic Giant Branch stars

    Get PDF
    Infrared Space Observatory (ISO) observations have shown that O-rich Asymptotic Giant Branch (AGB) stars exhibit crystalline silicate features in their spectra only if their mass-loss rate is higher than a certain threshold value. Usually, this is interpreted as evidence that crystalline silicates are not present in the dust shells of low mass-loss rate objects. In this study, radiative transfer calculations have been performed to search for an alternative explanation to the lack of crystalline silicate features in the spectrum of low mass-loss rate AGB stars. It is shown that due to a temperature difference between amorphous and crystalline silicates it is possible to include up to 40% of crystalline silicate material in the circumstellar dust shell, without the spectra showing the characteristic spectral features. Since this implies that low mass-loss rate AGB stars might also form crystalline silicates and deposit them into the Interstellar Medium (ISM), the described observational selection effect may put the process of dust formation around AGB stars and the composition of the predominantly amorphous dust in the Interstellar Medium in a different light. Our model calculations result in a diagnostic tool to determine the crystallinity of an AGB star with a known mass-loss rate.Comment: accepted by A&A, 10 pages, 11 figure

    The Thermal Structure of the Circumstellar Disk Surrounding the Classical Be Star gamma Cassiopeia

    Full text link
    We have computed radiative equilibrium models for the gas in the circumstellar envelope surrounding the hot, classical Be star γ\gamma Cassiopeia. This calculation is performed using a code that incorporates a number of improvements over previous treatments of the disk's thermal structure by \citet{mil98} and \citet{jon04}; most importantly, heating and cooling rates are computed with atomic models for H, He, CNO, Mg, Si, Ca, & Fe and their relevant ions. Thus, for the first time, the thermal structure of a Be disk is computed for a gas with a solar chemical composition as opposed to assuming a pure hydrogen envelope. We compare the predicted average disk temperature, the total energy loss in Hα\alpha, and the near-IR excess with observations and find that all can be accounted for by a disk that is in vertical hydrostatic equilibrium with a density in the equatorial plane of ρ(R)3\rho(R)\approx 3 to 51011(R/R)2.5gcm35\cdot 10^{-11} (R/R_*)^{-2.5} \rm g cm^{-3}. We also discuss the changes in the disk's thermal structure that result from the additional heating and cooling processes available to a gas with a solar chemical composition over those available to a pure hydrogen plasma.Comment: 11 pages, 8 figures high resolution figures available at http://inverse.astro.uwo.ca/sig_jon07.htm

    Initial B Cell Activation Induces Metabolic Reprogramming and Mitochondrial Remodeling.

    Get PDF
    B lymphocytes provide adaptive immunity by generating antigen-specific antibodies and supporting the activation of T cells. Little is known about how global metabolism supports naive B cell activation to enable an effective immune response. By coupling RNA sequencing (RNA-seq) data with glucose isotopomer tracing, we show that stimulated B cells increase programs for oxidative phosphorylation (OXPHOS), the tricarboxylic acid (TCA) cycle, and nucleotide biosynthesis, but not glycolysis. Isotopomer tracing uncovered increases in TCA cycle intermediates with almost no contribution from glucose. Instead, glucose mainly supported the biosynthesis of ribonucleotides. Glucose restriction did not affect B cell functions, yet the inhibition of OXPHOS or glutamine restriction markedly impaired B cell growth and differentiation. Increased OXPHOS prompted studies of mitochondrial dynamics, which revealed extensive mitochondria remodeling during activation. Our results show how B cell metabolism adapts with stimulation and reveals unexpected details for carbon utilization and mitochondrial dynamics at the start of a humoral immune response

    The composition and size distribution of the dust in the coma of comet Hale-Bopp

    Full text link
    We discuss the composition and size distribution of the dust in the coma of comet Hale-Bopp. We do this by fitting simultaneously the infrared emission spectrum measured by the infrared space observatory (ISO) and the measured degree of linear polarization of scattered light at various phase angles and 12 different wavelengths. The effects of particle shape on the modeled optical properties of the dust grains are taken into account. We constrain our fit by forcing the abundances of the major rock forming chemical elements to be solar. The infrared spectrum at long wavelengths reveals that large grains are needed in order to fit the spectral slope. The size and shape distribution we employ allows us to estimate the sizes of the crystalline silicates. The ratios of the strength of various forsterite features show that the crystalline silicate grains in Hale-Bopp must be submicron sized. We exclude the presence of large crystalline silicate grains in the coma. Because of this lack of large crystalline grains combined with the fact that we do need large amorphous grains to fit the emission spectrum at long wavelengths, we need only approximately 4% of crystalline silicates by mass. After correcting for possible hidden crystalline material included in large amorphous grains, our best estimate of the total mass fraction of crystalline material is approximately 7.5%, significantly lower than deduced in previous studies in which the typical derived crystallinity is 20-30%. The implications of this on the possible origin and evolution of the comet are discussed. The crystallinity we observe in Hale-Bopp is consistent with the production of crystalline silicates in the inner solar system by thermal annealing and subsequent radial mixing to the comet forming region.Comment: Accepted for publication in Icaru
    corecore