317 research outputs found

    Gene expression changes related to immune processes associate with cognitive endophenotypes of schizophrenia

    Get PDF
    Schizophrenia is a heterogeneous disorder characterized by a spectrum of symptoms and many different underlying causes. Thus, instead of using the broad diagnosis, intermediate phenotypes can be used to possibly decrease the underlying complexity of the disorder. Alongside the classical symptoms of delusions and hallucinations, cognitive deficits are a core feature of schizophrenia. To increase our understanding of the biological processes related to these cognitive deficits, we performed a genome-wide gene expression analysis. A battery of 14 neuropsychological tests was administered to 844 individuals from a Finnish familial schizophrenia cohort. We grouped the applied neuropsychological tests into five factors for further analysis. Cognitive endophenotypes, whole blood mRNA, genotype, and medication use data were studied from 47 individuals. Expression level of several RNA probes were significantly associated with cognitive performance. The factor representing Verbal Working Memory was associated with altered expression levels of 11 probes, of which one probe was also associated with a specific sub-measure of this factor (WMS-R Digit span backward). While, the factor Processing speed was related to one probe, which additionally associated among 55 probes with a specific sub-measure of this factor (WAIS-R Digit symbol). Two probes were associated with the measure recognition memory performance. Enrichment analysis of these differentially expressed probes highlighted immunological processes. Our findings are in line with genome-wide genetic discoveries made in schizophrenia, suggesting that immunological processes may be of biological interest for future drug design towards schizophrenia and the cognitive dysfunctions that underlie it.Peer reviewe

    Examining the evidence for decoupling between photosynthesis and transpiration during heat extremes

    Get PDF
    Recent experimental evidence suggests that during heat extremes, wooded ecosystems may decouple photosynthesis and transpiration, reducing photosynthesis to near zero but increasing transpiration into the boundary layer. This feedback may act to dampen, rather than amplify, heat extremes in wooded ecosystems. We examined eddy covariance databases (OzFlux and FLUXNET2015) to identify whether there was field-based evidence to support these experimental findings. We focused on two types of heat extremes: (i) the 3 days leading up to a temperature extreme, defined as including a daily maximum temperature &gt;37&thinsp;∘C (similar to the widely used TXx metric), and (ii) heatwaves, defined as 3 or more consecutive days above 35&thinsp;∘C. When focusing on (i), we found some evidence of reduced photosynthesis and sustained or increased latent heat fluxes at seven Australian evergreen wooded flux sites. However, when considering the role of vapour pressure deficit and focusing on (ii), we were unable to conclusively disentangle the decoupling between photosynthesis and latent heat flux from the effect of increasing the vapour pressure deficit. Outside of Australia, the Tier-1 FLUXNET2015 database provided limited scope to tackle this issue as it does not sample sufficient high temperature events with which to probe the physiological response of trees to extreme heat. Thus, further work is required to determine whether this photosynthetic decoupling occurs widely, ideally by matching experimental species with those found at eddy covariance tower sites. Such measurements would allow this decoupling mechanism to be probed experimentally and at the ecosystem scale. Transpiration during heatwaves remains a key issue to resolve, as no land surface model includes a decoupling mechanism, and any potential dampening of the land–atmosphere amplification is thus not included in climate model projections.</p

    Thirty-eight years of CO&lt;sub&gt;2&lt;/sub&gt; fertilization has outpaced growing aridity to drive greening of Australian woody ecosystems

    Get PDF
    Climate change is projected to increase the imbalance between the supply (precipitation) and atmospheric demand for water (i.e., increased potential evapotranspiration), stressing plants in water-limited environments. Plants may be able to offset increasing aridity because rising CO2 increases water use efficiency. CO2 fertilization has also been cited as one of the drivers of the widespread "greening" phenomenon. However, attributing the size of this CO2 fertilization effect is complicated, due in part to a lack of long-term vegetation monitoring and interannual- to decadalscale climate variability. In this study we asked the question of how much CO2 has contributed towards greening. We focused our analysis on a broad aridity gradient spanning eastern Australia's woody ecosystems. Next we analyzed 38 years of satellite remote sensing estimates of vegetation greenness (normalized difference vegetation index, NDVI) to examine the role of CO2 in ameliorating climate change impacts. Multiple statistical techniques were applied to separate the CO2-attributable effects on greening from the changes in water supply and atmospheric aridity. Widespread vegetation greening occurred despite a warming climate, increases in vapor pressure deficit, and repeated record-breaking droughts and heat waves. Between 1982-2019 we found that NDVI increased (median 11.3 %) across 90.5 % of the woody regions. After masking disturbance effects (e.g., fire), we statistically estimated an 11.7 % increase in NDVI attributable to CO2, broadly consistent with a hypothesized theoretical expectation of an 8.6 % increase in water use efficiency due to rising CO2. In contrast to reports of a weakening CO2 fertilization effect, we found no consistent temporal change in the CO2 effect. We conclude rising CO2 has mitigated the effects of increasing aridity, repeated record-breaking droughts, and record-breaking heat waves in eastern Australia. However, we were unable to determine whether trees or grasses were the primary beneficiary of the CO2-induced change in water use efficiency, which has implications for projecting future ecosystem resilience. A more complete understanding of how CO2-induced changes in water use efficiency affect trees and non-tree vegetation is needed

    Identifying areas at risk of drought-induced tree mortality across South-Eastern Australia

    Get PDF
    South-East Australia has recently been subjected to two of the worst droughts in the historical record (Millennium Drought, 2000–2009 and Big Dry, 2017–2019). Unfortunately, a lack of forest monitoring has made it difficult to determine whether widespread tree mortality has resulted from these droughts. Anecdotal observations suggest the Big Dry may have led to more significant tree mortality than the Millennium drought. Critically, to be able to robustly project future expected climate change effects on Australian vegetation, we need to be able to assess the vulnerability to drought of Australian trees. Here, we implemented a model of plant hydraulics into the Community Atmosphere Biosphere Land Exchange (CABLE) land surface model. We parameterised the drought response behaviour of five broad vegetation types, based on a common garden dry-down experiment with species originating across a rainfall gradient (188–1125 mm yr1 ) across South-East Australia. The new hydraulics model significantly improved (~35–45 % reduction in root mean square error) CABLE’s previous predictions of latent heat fluxes during periods of water stress at two eddy covariance sites in Australia. Landscape-scale predictions of the greatest percentage loss of hydraulic conductivity (PLC), 40–60 %, were broadly consistent with satellite estimates of regions of the greatest change in both droughts. In neither drought did CABLE predict that trees would have reached critical PLC in widespread areas (i.e. it projected a low mortality risk), although the model highlighted critical levels near the desert regions of South-East Australia where few trees live. Overall, our experimentally constrained model results imply significant resilience to drought conferred by hydraulic function, but also highlight critical data and scientific gaps. Our approach presents a promising avenue to integrate experimental data and make regional-scale predictions of potential drought-induced hydraulic failure

    Effects of a Two-Year Home-Based Exercise Training Program on Oxidized LDL and HDL Lipids in Coronary Artery Disease Patients with and without Type-2 Diabetes

    Get PDF
    We investigated the effect of two-year home-based exercise training program on oxidized low-density lipoprotein LDL (ox-LDL) and high-density lipoprotein HDL (ox-HDL) lipids in patients with coronary artery disease (CAD), both with and without type-2 diabetes (T2D). Analysis of lipoprotein-oxidized lipids was based on the determination of baseline conjugated dienes in lipoprotein lipids. In order to study the effect of an exercise load on ox-LDL and ox-HDL lipids patients in both CAD and CAD + T2D intervention, groups were divided in three based on exercise load (high, medium, and low). During the two-year home-based exercise training program, the study showed that only higher training volume resulted in a decreased concentration of ox-LDL, while the two groups with lower training volumes showed no change. This result indicates that the training load needs to be sufficiently high in order to decrease the concentration of atherogenic ox-LDL lipids in patients with CAD and CAD + T2D. Interestingly, the concentration of ox-HDL did not change in any of the subgroups. This could indicate that the lipid peroxide-transporting capacity of HDL, suggested by results from exercise training studies in healthy adults, may not function similarly in CAD patients with or without T2D. Moreover, the lipid-lowering medication used may have had an influence on these results

    Towards species-level forecasts of drought-induced tree mortality risk

    Get PDF
    Predicting species-level responses to drought at the landscape scale is critical to reducing uncertainty in future terrestrial carbon and water cycle projections. We embedded a stomatal optimisation model in the Community Atmosphere Biosphere Land Exchange (CABLE) land surface model and parameterised the model for 15 canopy dominant eucalypt tree species across South-Eastern Australia (mean annual precipitation range: 344–1424 mm yr−1). We conducted three experiments: applying CABLE to the 2017–2019 drought; a 20% drier drought; and a 20% drier drought with a doubling of atmospheric carbon dioxide (CO2). The severity of the drought was highlighted as for at least 25% of their distribution ranges, 60% of species experienced leaf water potentials beyond the water potential at which 50% of hydraulic conductivity is lost due to embolism. We identified areas of severe hydraulic stress within-species’ ranges, but we also pinpointed resilience in species found in predominantly semiarid areas. The importance of the role of CO2 in ameliorating drought stress was consistent across species. Our results represent an important advance in our capacity to forecast the resilience of individual tree species, providing an evidence base for decision-making around the resilience of restoration plantings or net-zero emission strategies

    Towards species‐level forecasts of drought‐induced tree mortality risk

    Get PDF
    Predicting species-level responses to drought at the landscape scale is critical to reducing uncertainty in future terrestrial carbon and water cycle projections. We embedded a stomatal optimisation model in the Community Atmosphere Biosphere Land Exchange (CABLE) land surface model and parameterised the model for 15 canopy dominant eucalypt tree species across South-Eastern Australia (mean annual precipitation range: 344–1424 mm yr−1). We conducted three experiments: applying CABLE to the 2017–2019 drought; a 20% drier drought; and a 20% drier drought with a doubling of atmospheric carbon dioxide (CO2). The severity of the drought was highlighted as for at least 25% of their distribution ranges, 60% of species experienced leaf water potentials beyond the water potential at which 50% of hydraulic conductivity is lost due to embolism. We identified areas of severe hydraulic stress within-species’ ranges, but we also pinpointed resilience in species found in predominantly semiarid areas. The importance of the role of CO2 in ameliorating drought stress was consistent across species. Our results represent an important advance in our capacity to forecast the resilience of individual tree species, providing an evidence base for decision-making around the resilience of restoration plantings or net-zero emission strategies

    Early recognition of coeliac disease through community pharmacies: A proof of concept study

    Get PDF
    Setting: 15 community pharmacies in the UK Objective: Proof of concept study to test the use of community pharmacies for active case finding of patients with coeliac disease. Method: Customers accessing over-the counter and prescription medicines indicated in the treatment of possible symptoms of coeliac disease over a six month period were offered a free point of care test. All patients were given advice regarding the test results and those who tested positive were advised to make an appointment with their general practitioner. Patients and pharmacists involved in service provision were asked to complete a satisfaction survey. Pharmacists were additionally invited to undertake interviews to better understand their views on the service. Main outcome measures: Feasibility of service, acceptability to stakeholders and proportion testing positive for coeliac disease. Results: Of the 551 individuals tested, 52 (9.4%) tested positive. 277 (50.3%) were tested for accessing irritable bowel syndrome treatment, 142 (25.8%) due to presenting for diarrhoea. The proportion of patients testing positive with different symptoms or for different treatments were similar. Of 43 customers who returned the satisfaction survey, all would recommend the service to others, believing the community pharmacy to be a suitable location. Community pharmacists believed that it enabled them to improve relationships with their customers and that medical practices were receptive to the service. Conclusion: This proof of concept study has shown that community pharmacies using a point of care test can effectively recognise and refer patients for confirmatory coeliac disease testing with high levels of customer and service provider satisfaction

    How representative are FLUXNET measurements of surface fluxes during temperature extremes?

    Get PDF
    In response to a warming climate, temperature extremes are changing in many regions of the world. Therefore, understanding how the fluxes of sensible heat, latent heat and net ecosystem exchange respond and contribute to these changes is important. We examined 216 sites from the open access Tier 1 FLUXNET2015 and free fair-use La Thuile data sets, focussing only on observed (non-gap-filled) data periods. We examined the availability of sensible heat, latent heat and net ecosystem exchange observations coincident in time with measured temperature for all temperatures, and separately for the upper and lower tail of the temperature distribution, and expressed this availability as a measurement ratio. We showed that the measurement ratios for both sensible and latent heat fluxes are generally lower (0.79 and 0.73 respectively) than for temperature measurements, and the measurement ratio of net ecosystem exchange measurements are appreciably lower (0.42). However, sites do exist with a high proportion of measured sensible and latent heat fluxes, mostly over the United States, Europe and Australia. Few sites have a high proportion of measured fluxes at the lower tail of the temperature distribution over very cold regions (e.g. Alaska, Russia) or at the upper tail in many warm regions (e.g. Central America and the majority of the Mediterranean region), and many of the world's coldest and hottest regions are not represented in the freely available FLUXNET data at all (e.g. India, the Gulf States, Greenland and Antarctica). However, some sites do provide measured fluxes at extreme temperatures, suggesting an opportunity for the FLUXNET community to share strategies to increase measurement availability at the tails of the temperature distribution. We also highlight a wide discrepancy between the measurement ratios across FLUXNET sites that is not related to the actual temperature or rainfall regimes at the site, which we cannot explain. Our analysis provides guidance to help select eddy covariance sites for researchers interested in understanding and/or modelling responses to temperature extremes.</p
    corecore