104 research outputs found

    Careggi Smart Hospital: A mobile app for patients, citizens and healthcare staff

    Get PDF
    This paper presents a mobile app called “Careggi Smart Hospital” which has been developed for the Careggi Polyclinic in Florence. The application is designed for Android smartphones and tablets and it is freely downloadable from the Google Play Store. It provides various useful tools to the hospital's users such as personnel and structures finding, way-finding and the possibility to access personal medical records collected on regional electronic health record

    Visual art inspired by the collective feeding behavior of sand-bubbler crabs

    Full text link
    Sand--bubblers are crabs of the genera Dotilla and Scopimera which are known to produce remarkable patterns and structures at tropical beaches. From these pattern-making abilities, we may draw inspiration for digital visual art. A simple mathematical model is proposed and an algorithm is designed that may create such sand-bubbler patterns artificially. In addition, design parameters to modify the patterns are identified and analyzed by computational aesthetic measures. Finally, an extension of the algorithm is discussed that may enable controlling and guiding generative evolution of the art-making process

    Travel routes to remote ocean targets reveal the map sense resolution for a marine migrant

    Get PDF
    How animals navigate across the ocean to isolated targets remains perplexing greater than 150 years since this question was considered by Charles Darwin. To help solve this long-standing enigma, we considered the likely resolution of any map sense used in migration, based on the navigational performance across different scales (tens to thousands of kilometres). We assessed navigational performance using a unique high-resolution Fastloc-GPS tracking dataset for post-breeding hawksbill turtles (Eretmochelys imbricata) migrating relatively short distances to remote, isolated targets on submerged banks in the Indian Ocean. Individuals often followed circuitous paths (mean straightness index = 0.54, range 0.14-0.93, s.d. = 0.23, n = 22), when migrating short distances (mean beeline distance to target = 106 km, range 68.7-178.2 km). For example, one turtle travelled 1306.2 km when the beeline distance to the target was only 176.4 km. When off the beeline to their target, turtles sometimes corrected their course both in the open ocean and when encountering shallow water. Our results provide compelling evidence that hawksbill turtles only have a relatively crude map sense in the open ocean. The existence of widespread foraging and breeding areas on isolated oceanic sites points to target searching in the final stages of migration being common in sea turtles

    Pan-Atlantic analysis of the overlap of a highly migratory species, the leatherback turtle, with pelagic longline fisheries

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Large oceanic migrants play important roles in ecosystems, yet many species are of conservation concern as a result of anthropogenic threats, of which incidental capture by fisheries is frequently identified. The last large populations of the leatherback turtle, Dermochelys coriacea, occur in the Atlantic Ocean, but interactions with industrial fisheries could jeopardize recent positive population trends, making bycatch mitigation a priority. Here, we perform the first pan-Atlantic analysis of spatio-temporal distribution of the leatherback turtle and ascertain overlap with longline fishing effort. Data suggest that the Atlantic probably consists of two regional management units: northern and southern (the latter including turtles breeding in South Africa). Although turtles and fisheries show highly diverse distributions, we highlight nine areas of high susceptibility to potential bycatch (four in the northern Atlantic and five in the southern/equatorial Atlantic) that are worthy of further targeted investigation and mitigation. These are reinforced by reports of leatherback bycatch at eight of these sites. International collaborative efforts are needed, especially from nations hosting regions where susceptibility to bycatch is likely to be high within their exclusive economic zone (northern Atlantic: Cape Verde, Gambia, Guinea Bissau, Mauritania, Senegal, Spain, USA and Western Sahara; southern Atlantic: Angola, Brazil, Namibia and UK) and from nations fishing in these high-susceptibility areas, including those located in international waters.Work in Gabon was financially supported by the Large Pelagics Research Center through National Oceanographic and Atmospheric Agency award no. NA04NMF4550391, the UK Defra Darwin Initiative, the Shellshock Campaign (European Association for Zoos and Aquaria) and the UK Natural Environment Research Council. Sea turtle monitoring programmes in Gabon were financially supported by the Wildlife Conservation Society and by the Gabon Sea Turtle Partnership with funding from the Marine Turtle Conservation Fund (United States Fish and Wildlife Service, US Department of the Interior). Four of the satellite tags were deployed in Canadian waters by M. James (Dalhousie University) and the Canadian Sea Turtle Network, with the funding support of Canadian Sea Turtle Network leatherback field research provided by R. A. Myers, the Canadian Wildlife Federation, Environment Canada and WWF-Canada. Work in French Guiana was financially supported by CNES, DEAL and the European Union.This study results from the collaborative effort of 10 data providers, which have satellite-tracked leatherback turtles in the Atlantic Ocean since 1995, through their voluntary participation in the Trans-Atlantic Leatherback Conservation Initiative (TALCIN), a WWF-led initiative. We thank C. Drews (WWF-International) and Jean-Yves Georges (IPHC-CNRS) for having initiated this project. Significant contributions were made by A. Fonseca and M. L. Felix and the WWF Guianas office in fostering this project to secure its continuation. We thank those involved in the sea turtle restoration plan in French Guiana (DEAL, ONCFS, Kulalasi NGO, Kwata, the Reserve Naturelle de l'Amana, Chiefs of Awala and Yalimapo), Yvon Le Maho (IPHC-CNRS) for having initiated the leatherback tracking programme in French Guiana, colleagues from the Regional Program for Sea Turtles Research and Conservation of Argentina–PRICTMA, Aquamarina and FundaciĂłn Mundo Marino, the onboard scientific observers from PNOFA-DINARA, the crew and owner of the F/V Torres del Paine, the artisanal fishermen from KiyĂș, San JosĂ©, Uruguay, D. del Bene (PROFAUMA), Z. Di Rienzo and colleagues from KarumbĂ©, the University of Pisa for initiating the satellite tagging programmes in South Africa, and the South African Department of Environmental Affairs for continuing the work in cooperation with Dr Nel from the Nelson Mandela Metropolitan University, Port Elizabeth and Ezemvelo KZN Wildlife. We thank M. L. Felix for her efforts in the deployment of satellite tags in Suriname and the Nature Conservation Division Suriname for facilitating these research efforts. P.M. thanks C. Palma for his help in dealing with ICCAT's database, C. Ere, as well as the GIS training and support received from SCGIS and the ESRI Conservation Program, which allowed processing of fishing-effort data. We thank J. Parezo for her careful reading of the manuscript. All authors designed the study and contributed data; S.F, M.S.C., P.M. and M.J.W. compiled the data; S.F., M.A.N. and A.L. coordinated and supervised the project; S.F., M.J.W., P.M. and B.J.G. led the data analysis and interpretation with contributions from all authors; the manuscript was developed by S.F. and M.J.W. as lead authors, with contributions from all authors

    Pan-Atlantic analysis of the overlap of a highly migratory species, the leatherback turtle, with pelagic longline fisheries

    Get PDF
    Large oceanic migrants play important roles in ecosystems, yet many species are of conservation concern as a result of anthropogenic threats, of which incidental capture by fisheries is frequently identified. The last large populations of the leatherback turtle, Dermochelys coriacea, occur in the Atlantic Ocean, but interactions with industrial fisheries could jeopardize recent positive population trends, making bycatch mitigation a priority. Here, we perform the first pan-Atlantic analysis of spatio-temporal distribution of the leatherback turtle and ascertain overlap with longline fishing effort. Data suggest that the Atlantic probably consists of two regional management units: northern and southern (the latter including turtles breeding in South Africa). Although turtles and fisheries show highly diverse distributions, we highlight nine areas of high susceptibility to potential bycatch (four in the northern Atlantic and five in the southern/equatorial Atlantic) that are worthy of further targeted investigation and mitigation. These are reinforced by reports of leatherback bycatch at eight of these sites. International collaborative efforts are needed, especially from nations hosting regions where susceptibility to bycatch is likely to be high within their exclusive economic zone (northern Atlantic: Cape Verde, Gambia, Guinea Bissau, Mauritania, Senegal, Spain, USA and Western Sahara; southern Atlantic: Angola, Brazil, Namibia and UK) and from nations fishing in these high-susceptibility areas, including those located in international waters

    Green turtles (Chelonia mydas) foraging at Arvoredo Island in Southern Brazil: Genetic characterization and mixed stock analysis through mtDNA control region haplotypes

    Get PDF
    We analyzed mtDNA control region sequences of green turtles (Chelonia mydas) from Arvoredo Island, a foraging ground in southern Brazil, and identified eight haplotypes. Of these, CM-A8 (64%) and CM-A5 (22%) were dominant, the remainder presenting low frequencies (< 5%). Haplotype (h) and nucleotide (π) diversities were 0.5570 ± 0.0697 and 0.0021 ± 0.0016, respectively. Exact tests of differentiation and AMOVA ΊST pairwise values between the study area and eight other Atlantic foraging grounds revealed significant differences in most areas, except Ubatuba and Rocas/Noronha, in Brazil (p > 0.05). Mixed Stock Analysis, incorporating eleven Atlantic and one Mediterranean rookery as possible sources of individuals, indicated Ascension and Aves islands as the main contributing stocks to the Arvoredo aggregation (68.01% and 22.96%, respectively). These results demonstrate the extensive relationships between Arvoredo Island and other Atlantic foraging and breeding areas. Such an understanding provides a framework for establishing adequate management and conservation strategies for this endangered species

    Green and hawksbill turtles in the Lesser Antilles demonstrate behavioural plasticity in inter-nesting behaviour and post-nesting migration

    Get PDF
    Satellite transmitters were deployed on three green turtles, Chelonia mydas, and two hawksbill turtles, Eretmochelys imbricata, nesting in the Lesser Antilles islands, Caribbean, between 2005-2007 to obtain preliminary information about the inter-nesting, migratory and foraging habitats in the region. Despite the extremely small dataset, both year-round residents and migrants were identified; specifically (1) two green turtles used local shallow coastal sites within 50 km of the nesting beach during all of their inter-nesting periods and then settled at these sites on completion of their breeding seasons, (2) one hawksbill turtle travelled 200 km westward before reversing direction and settling within 50 km of the original nesting beach and (3) one green and one hawksbill turtle initially nested at the proximate site, before permanently relocating to an alternative nesting site over 190 km distant. A lack of nesting beach fidelity was supported by flipper tag datasets for the region. Tagging datasets from 2002-2012 supported that some green and hawksbill individuals exhibit low fidelity to nesting beaches, whereas other females exhibited a high degree of fidelity (26 turtles tagged, 40.0km maximum distance recorded from original nesting beach). Individual turtles nesting on St Eustatius and St Maarten appear to exhibit behavioural plasticity in their inter-nesting behaviour and post-nesting migration routes in the Eastern Caribbean. The tracking and tagging data combined indicate that some of the green and hawksbill females that nest in the Lesser Antilles Islands are year-round residents, while others may nest and forage at alternative sites. Thus, continued year-round protection of these islands and implementation of protection programmes in nearby islands could contribute towards safeguarding the green and hawksbill populations of the region

    Pan-atlantic analysis of the overlap of a highly migratory species, the leatherback turtle, with pelagic longline fisheries

    Full text link
    Large oceanic migrants play important roles in ecosystems, yet many species are of conservation concern as a result of anthropogenic threats, of which incidental capture by fisheries is frequently identified. The last large populations of the leatherback turtle, Dermochelys coriacea, occur in the Atlantic Ocean, but interactions with industrial fisheries could jeopardize recent positive population trends, making bycatch mitigation a priority. Here, we perform the first pan-Atlantic analysis of spatio-temporal distribution of the leatherback turtle and ascertain overlap with longline fishing effort. Data suggest that the Atlantic probably consists of two regional management units: northern and southern (the latter including turtles breeding in South Africa). Although turtles and fisheries show highly diverse distributions, we highlight nine areas of high susceptibility to potential bycatch (four in the northern Atlantic and five in the southern/equatorial Atlantic) that are worthy of further targeted investigation and mitigation. These are reinforced by reports of leatherback bycatch at eight of these sites. International collaborative efforts are needed, especially from nations hosting regions where susceptibility to bycatch is likely to be high within their exclusive economic zone (northern Atlantic: Cape Verde, Gambia, Guinea Bissau, Mauritania, Senegal, Spain, USA and Western Sahara; southern Atlantic: Angola, Brazil, Namibia and UK) and from nations fishing in these high-susceptibility areas, including those located in international waters

    Network analysis of sea turtle movements and connectivity: A tool for conservation prioritization

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: The data that support the findings of this study are available in the Supplementary Material of this article and Zenodo (https://doi.org/10.5281/zenodo.5898578). Details for all animals included in this study are provided in Appendices S1 and S2. Data used to create the spatial networks are listed in the Appendices S3 and S4. The geospatial files for all networks are available on the Migratory Connectivity in the Ocean Project website (https://mico.eco) and Dryad (https://doi.org/10.5061/dryad.j3tx95xg9). Additional data that support the findings of this study are available from the corresponding author upon reasonable request.Aim Understanding the spatial ecology of animal movements is a critical element in conserving long-lived, highly mobile marine species. Analyzing networks developed from movements of six sea turtle species reveals marine connectivity and can help prioritize conservation efforts. Location Global. Methods We collated telemetry data from 1235 individuals and reviewed the literature to determine our dataset's representativeness. We used the telemetry data to develop spatial networks at different scales to examine areas, connections, and their geographic arrangement. We used graph theory metrics to compare networks across regions and species and to identify the role of important areas and connections. Results Relevant literature and citations for data used in this study had very little overlap. Network analysis showed that sampling effort influenced network structure, and the arrangement of areas and connections for most networks was complex. However, important areas and connections identified by graph theory metrics can be different than areas of high data density. For the global network, marine regions in the Mediterranean had high closeness, while links with high betweenness among marine regions in the South Atlantic were critical for maintaining connectivity. Comparisons among species-specific networks showed that functional connectivity was related to movement ecology, resulting in networks composed of different areas and links. Main conclusions Network analysis identified the structure and functional connectivity of the sea turtles in our sample at multiple scales. These network characteristics could help guide the coordination of management strategies for wide-ranging animals throughout their geographic extent. Most networks had complex structures that can contribute to greater robustness but may be more difficult to manage changes when compared to simpler forms. Area-based conservation measures would benefit sea turtle populations when directed toward areas with high closeness dominating network function. Promoting seascape connectivity of links with high betweenness would decrease network vulnerability.International Climate Initiative (IKI)German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU
    • 

    corecore