6,666 research outputs found

    Normally ζ-reversible profinite groups

    Get PDF
    open2noWe examine (finitely generated) profinite groups in which two formal Dirichlet series, the normal subgroup zeta function and the normal probabilistic zeta function, coincide; we call these groups normally ζ-reversible. We conjecture that these groups are pronilpotent and we prove this conjecture if G is a normally ζ-reversible satisfying one of the following properties: G is prosoluble, G is perfect, all the nonabelian composition factors of G are alternating groups.openCimetta, LEONE CESARE; Lucchini, AndreaCimetta, LEONE CESARE; Lucchini, Andre

    The independence graph of a finite group

    Get PDF
    Given a finite group G, we denote by \u394 (G) the graph whose vertices are the elements G and where two vertices x and y are adjacent if there exists a minimal generating set of G containing x and y. We prove that \u394 (G) is connected and classify the groups G for which \u394 (G) is a planar graph

    Preasymptotic multiscaling in the phase-ordering dynamics of the kinetic Ising model

    Full text link
    The evolution of the structure factor is studied during the phase-ordering dynamics of the kinetic Ising model with conserved order parameter. A preasymptotic multiscaling regime is found as in the solution of the Cahn-Hilliard-Cook equation, revealing that the late stage of phase-ordering is always approached through a crossover from multiscaling to standard scaling, independently from the nature of the microscopic dynamics.Comment: 11 pages, 3 figures, to be published in Europhys. Let

    Ptychographic reconstruction of attosecond pulses

    Full text link
    We demonstrate a new attosecond pulse reconstruction modality which uses an algorithm that is derived from ptychography. In contrast to other methods, energy and delay sampling are not correlated, and as a result, the number of electron spectra to record is considerably smaller. Together with the robust algorithm, this leads to a more precise and fast convergence of the reconstruction.Comment: 12 pages, 7 figures, the MATLAB code for the method described in this paper is freely available at http://figshare.com/articles/attosecond_Extended_Ptychographyc_Iterative_Engine_ePIE_/160187

    Attosecond screening dynamics mediated by electron-localization

    Full text link
    Transition metals with their densely confined and strongly coupled valence electrons are key constituents of many materials with unconventional properties, such as high-Tc superconductors, Mott insulators and transition-metal dichalcogenides. Strong electron interaction offers a fast and efficient lever to manipulate their properties with light, creating promising potential for next-generation electronics. However, the underlying dynamics is a fast and intricate interplay of polarization and screening effects, which is poorly understood. It is hidden below the femtosecond timescale of electronic thermalization, which follows the light-induced excitation. Here, we investigate the many-body electron dynamics in transition metals before thermalization sets in. We combine the sensitivity of intra-shell transitions to screening effects with attosecond time resolution to uncover the interplay of photo-absorption and screening. First-principles time-dependent calculations allow us to assign our experimental observations to ultrafast electronic localization on d-orbitals. The latter modifies the whole electronic structure as well as the collective dynamic response of the system on a timescale much faster than the light-field cycle. Our results demonstrate a possibility for steering the electronic properties of solids prior to electron thermalization, suggesting that the ultimate speed of electronic phase transitions is limited only by the duration of the controlling laser pulse. Furthermore, external control of the local electronic density serves as a fine tool for testing state-of-the art models of electron-electron interactions. We anticipate our study to facilitate further investigations of electronic phase transitions, laser-metal interactions and photo-absorption in correlated electron systems on its natural timescale

    GENERATION OF UNIFORM HAZARD FLOOR RESPONSE SPECTRA FOR LINEAR MDOF STRUCTURES

    Get PDF
    This paper presents a probabilistic seismic demand model for predicting the pseudo-acceleration response of a linear nonstructural component attached to a linear structure. The model relates the response of the component with the pseudo-acceleration response of the generic mode of vibration of the supporting structure. Interaction between component and structure is ignored. Independency of the model on the specific characteristics of seismic hazard at the site is showed. The model is used to develop a method for direct generation of uniform hazard floor response spectra. By using the method floor spectra are determined through a closed-form expression, given the mean annual frequency of interest, the non-structural component damping ratio, the modal properties of the structure, and three uniform hazard spectra representing seismic hazard at the site

    Comparison of Thermocline Molten Salt Storage Performances to Commercial Two-tank Configuration☆

    Get PDF
    Abstract This work deals with the assessment of thermocline heat storage performances when applied to solar thermal plants. The considered thermocline is based on molten salt heat transfer fluid (Solar Salts between 300 °C and 550 °C) and filled with quartzite. A 2-D finite element heat transfer model is developed to determine the temperatures inside the vessel with mass flows input/output. The model includes heat conductivity of molten salt and quartzite rocks, heat transfer between the molten salts and the quartzite, as well as heat loss to the environment. Results of the model are compared to available experimental data as well as analytic results showing good agreement. Then, the thermocline storage with the performances predicted by the 2-D code was integrated in a CSP plant previously modelled with the two-tank TES system. Plant management is kept equal to the two-tank configuration. A performance index is introduced to make a consistent comparison between the thermocline and the two-tank system: storage efficiency is defined as the heat withdrawn from the storage above 545 °C divided by the overall input in the storage. The defined index is equal to 100% for the two tank system as thermal losses have a negligible impact. On the contrary, in thermocline storage, part of heat stored in the molten salt is in the thermocline region and this molten salt is not accounted as useful. The thickness of the thermocline is about 4 to 6 meter height out of 14 meters making the storage performances in the range of 65%, hence significantly lower than in two-tank configuration. A sensitivity analysis on tank size and tank shape factor is performed to assess the optimal configuration for the thermocline

    Neurological impacts from inhalation of pollutants and the nose–brain connection

    Get PDF
    The effects of inhaled particles have focused heavily on the respiratory and cardiovascular systems. Most studies have focused on inhaled metals, whereas less information is available for other particle types regarding the effects on the brain and other extra-pulmonary organs. We review here the key available literature on nanoparticle uptake and transport through the olfactory pathway, the experimental data from animal and in vitro studies, and human epidemiological observations. Nanoparticles (\u3c0.1µm in one dimension) may easily reach the brain from the respiratory tract via sensory neurons and transport from the distal alveoli into the blood or lymph as free particles or inside phagocytic cells. These mechanisms and subsequent biologic responses may be influenced by the chemical composition of inhaled particles. Animal studies with ambient particulate matter and certain other particles show alterations in neuro-inflammatory markers of oxidative stress and central neurodegeneration. Human observations indicate motor, cognitive, and behavioral changes especially after particulate metal exposure in children. Exposure to co-pollutants and/or underlying disease states could also impact both the biokinetics and effects of airborne particles in the brain. Data are needed from the areas of inhalation, neurology, and metal toxicology in experimental and human studies after inhalation exposure. An increased understanding of the neurotoxicity associated with air pollution exposure is critical to protect susceptible individuals in the workplace and the general population
    corecore