355 research outputs found
Controlling the Interactions between Soft Colloids via Surface Adsorption
By employing monomer-resolved computer simulations and analytical
considerations based on polymer scaling theory, we analyze the conformations
and interactions of multiarm star polymers strongly adsorbed on a smooth,
two-dimensional plane. We find a stronger stretching of the arms as well as a
stronger repulsive, effective interaction than in the three dimensional case.
In particular, the star size scales with the number of arms as and the effective interaction as , as opposed to and , respectively, in three dimensions. Our results
demonstrate the dramatic effect that geometric confinement can have on the
effective interactions and the subsequent correlations of soft colloids in
general, for which the conformation can be altered as a result of geometrical
constraints imposed on them.Comment: 17 pages, LaTeX, 5 figures, to appear in Macromolecule
Effect of bending rigidity on the knotting of a polymer under tension
A coarse-grained computational model is used to investigate how the bending
rigidity of a polymer under tension affects the formation of a trefoil knot.
Thermodynamic integration techniques are applied to demonstrate that the
free-energy cost of forming a knot has a minimum at non-zero bending rigidity.
The position of the minimum exhibits a power-law dependence on the applied
tension. For knotted polymers with non-uniform bending rigidity, the knots
preferentially localize in the region with a bending rigidity that minimizes
the free-energy.Comment: 15 pages, 6 figures. Corrected problem with references to equation
Phase separation of a multiple occupancy lattice gas
A binary lattice gas model that allows for multiple occupancy of lattice
sites, inspired by recent coarse-grained descriptions of solutions of
interacting polymers, is investigated by combining the steepest descent
approximation with an exploration of the multidimensional energy landscape, and
by Gibbs ensemble Monte Carlo simulations. The one-component version of the
model, involving on site and nearest neighbour interactions, is shown to
exhibit microphase separation into two sub-lattices with different mean
occupation numbers. The symmetric two-component version of the multiple
occupancy lattice gas is shown to exhibit a demixing transition into two phases
above a critical mean occupation number.Comment: submitted to Journal of Physics
Fluid-fluid demixing transitions in colloid--polyelectrolyte star mixtures
We derive effective interaction potentials between hard, spherical colloidal
particles and star-branched polyelectrolytes of various functionalities and
smaller size than the colloids. The effective interactions are based on a
Derjaguin-like approximation, which is based on previously derived potentials
acting between polyelectrolyte stars and planar walls. On the basis of these
interactions we subsequently calculate the demixing binodals of the binary
colloid--polyelectrolyte star mixture, employing standard tools from
liquid-state theory. We find that the mixture is indeed unstable at moderately
high overall concentrations. The system becomes more unstable with respect to
demixing as the star functionality and the size ratio grow.Comment: 24 pages, 9 figures, submitted to Journal of Physics: Condensed
Matte
Structure, phase behavior and inhomogeneous fluid properties of binary dendrimer mixtures
The effective pair potentials between different kinds of dendrimers in
solution can be well approximated by appropriate Gaussian functions. We find
that in binary dendrimer mixtures the range and strength of the effective
interactions depend strongly upon the specific dendrimer architecture. We
consider two different types of dendrimer mixtures, employing the Gaussian
effective pair potentials, to determine the bulk fluid structure and phase
behavior. Using a simple mean field density functional theory (DFT) we find
good agreement between theory and simulation results for the bulk fluid
structure. Depending on the mixture, we find bulk fluid-fluid phase separation
(macro-phase separation) or micro-phase separation, i.e., a transition to a
state characterized by undamped periodic concentration fluctuations. We also
determine the inhomogeneous fluid structure for confinement in spherical
cavities. Again, we find good agreement between the DFT and simulation results.
For the dendrimer mixture exhibiting micro-phase separation, we observe rather
striking pattern formation under confinement.Comment: 8 pages, 10 figure
Studying synthesis confinement effects on the internal structure of nanogels in computer simulations
We study the effects of droplet finite size on the structure of nanogel
particles synthesized by random crosslinking of molecular polymers diluted in
nanoemulsions. For this, we use a bead-spring computer model of polymer-like
structures that mimics the confined random crosslinking process corresponding
to irradiation- or electrochemically-induced crosslinking methods. Our results
indicate that random crosslinking under strong confinement can lead to unusual
nanogel internal structures, with a central region less dense than the external
one, whereas under moderate confinement the resulting structure has a denser
central region. We analyze the topology of the polymer networks forming nanogel
particles with both types of architectures, their overall structural
parameters, their response to the quality of the solvent and compare the cases
of non-ionic and ionic systems
Dynamics in binary cluster crystals
As a result of the application of coarse-graining procedures to describe
complex fluids, the study of systems consisting of particles interacting
through bounded, repulsive pair potentials has become of increasing interest in
the last years. A well known example is the so-called Generalized Exponential
Model (GEM-), for which the interaction between particles is described by
the potential . Interactions with
lead to the formation of a novel phase of soft matter consisting of cluster
crystals. Recent studies on the phase behavior of binary mixtures of GEM-
particles have provided evidence for the formation of novel kinds of alloys,
depending on the cross interactions between the two species. This work aims to
study the dynamic behavior of such binary mixtures by means of extensive
molecular dynamics simulations, and in particular to investigate the effect of
the addition of non-clustering particles on the dynamic scenario of
one-component cluster crystals. Analogies and differences with the
one-component case are revealed and discussed by analyzing self- and collective
dynamic correlators.Comment: 17 pages, 8 figures, submitted to JSTA
Generation of defects and disorder from deeply quenching a liquid to form a solid
We show how deeply quenching a liquid to temperatures where it is linearly
unstable and the crystal is the equilibrium phase often produces crystalline
structures with defects and disorder. As the solid phase advances into the
liquid phase, the modulations in the density distribution created behind the
advancing solidification front do not necessarily have a wavelength that is the
same as the equilibrium crystal lattice spacing. This is because in a deep
enough quench the front propagation is governed by linear processes, but the
crystal lattice spacing is determined by nonlinear terms. The wavelength
mismatch can result in significant disorder behind the front that may or may
not persist in the latter stage dynamics. We support these observations by
presenting results from dynamical density functional theory calculations for
simple one- and two-component two-dimensional systems of soft core particles.Comment: 25 pages, 11 figure
Accurate description of bulk and interfacial properties in colloid-polymer mixtures
Large-scale Monte Carlo simulations of a phase-separating colloid-polymer
mixture are performed and compared to recent experiments. The approach is based
on effective interaction potentials in which the central monomers of
self-avoiding polymer chains are used as effective coordinates. By
incorporating polymer nonideality together with soft colloid-polymer repulsion,
the predicted binodal is in excellent agreement with recent experiments. In
addition, the interfacial tension as well as the capillary length are in
quantitative agreement with experimental results obtained at a number of points
in the phase-coexistence region, without the use of any fit parametersComment: 4 pages, 4 figure
- …