84 research outputs found
Hydrogen Bonding Patterns in a Series of 3-Spirocyclic Oxindoles
The crystal structures of the new compounds spiro[cyclohexane-1,3’-indol] 2’(1’H)-one (1), (rel-1R,2S)-spiro[bicyclo[2.2.1] heptane-2,3’-indol] 2’(1’H)-one (2) and spiro[indole-3,2’-tricyclo[3.3.1.13,7]decan]-2(1H)-one (3) have been determined by low temperature single crystal X-ray diffraction. The effects of substitution on the hydrogen bonding pattern is compared between all three compounds.Keywords: Hydrogen Bonding, X-ray Crystal Structure, Oxindoles, Cambridge Structural Databas
A structural study of 4-aminoantipyrine and six of its Schiff base derivatives
Six derivatives of 4-amino-1,5-dimethyl-2-phenyl-2,3-dihydro-1H-pyrazol-3-one (4-aminoantipyrine), C11H13N3O, (I), have been synthesized and structurally characterized to investigate the changes in the observed hydrogen-bonding motifs compared to the original 4-aminoantipyrine. The derivatives were synthesized from the reactions of 4-aminoantipyrine with various aldehyde-, ketone- and ester-containing molecules, producing (Z)-methyl 3-[(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)amino]but-2-enoate, C16H19N3O3, (II), (Z)-ethyl 3-[(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)amino]but-2-enoate, C17H21N3O3, (III), ethyl 2-[(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)amino]cyclohex-1-enecarboxylate, C20H25N3O3, (IV), (Z)-ethyl 3-[(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)amino]-3-phenylacrylate, C22H23N3O3, (V), 2-cyano-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)acetamide, C14H14N4O2, (VI), and (E)-methyl 4-{[(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)amino]methyl}benzoate, C20H19N3O3, (VII). The asymmetric units of all these compounds have one molecule on a general position. The hydrogen bonding in (I) forms chains of molecules via intermolecular N-H⋯O hydrogen bonds around a crystallographic sixfold screw axis. In contrast, the formation of enamines for all derived compounds except (VII) favours the formation of a six-membered intramolecular N-H⋯O hydrogen-bonded ring in (II)-(V) and an intermolecular N-H⋯O hydrogen bond in (VI), whereas there is an intramolecular C-H⋯O hydrogen bond in the structure of imine (VII). All the reported compounds, except for (II), feature π-π interactions, while C-H⋯π interactions are observed in (II), C-H⋯O interactions are observed in (I), (III), (V) and (VI), and a C-O⋯π interaction is observed in (II).SP2016http://journals.iucr.org/c/issues/2015/02/00/fn3185
Cyclooctanaminium hydrogen succinate monohydrate
In the title hydrated salt, C8H18N+·C4H5O4
−·H2O, the cyclooctyl ring of the cation is disordered over two positions in a 0.833 (3):0.167 (3) ratio. The structure contains various O—H.·O and N—H⋯O interactions, forming a hydrogen-bonded layer of molecules perpendicular to the c axis. In each layer, the ammonium cation hydrogen bonds to two hydrogen succinate anions and one water molecule. Each hydrogen succinate anion hydrogen bonds to neighbouring anions, forming a chain of molecules along the b axis. In addition, each hydrogen succinate anion hydrogen bonds to two water molecules and the ammonium cation
Structure of the solar photosphere studied from the radiation hydrodynamics code ANTARES
The ANTARES radiation hydrodynamics code is capable of simulating the solar
granulation in detail unequaled by direct observation. We introduce a
state-of-the-art numerical tool to the solar physics community and demonstrate
its applicability to model the solar granulation. The code is based on the
weighted essentially non-oscillatory finite volume method and by its
implementation of local mesh refinement is also capable of simulating turbulent
fluids. While the ANTARES code already provides promising insights into
small-scale dynamical processes occurring in the quiet-Sun photosphere, it will
soon be capable of modeling the latter in the scope of radiation
magnetohydrodynamics. In this first preliminary study we focus on the vertical
photospheric stratification by examining a 3-D model photosphere with an
evolution time much larger than the dynamical timescales of the solar
granulation and of particular large horizontal extent corresponding to on the solar surface to smooth out horizontal spatial
inhomogeneities separately for up- and downflows. The highly resolved Cartesian
grid thereby covers of the upper convection zone and the
adjacent photosphere. Correlation analysis, both local and two-point, provides
a suitable means to probe the photospheric structure and thereby to identify
several layers of characteristic dynamics: The thermal convection zone is found
to reach some ten kilometers above the solar surface, while convectively
overshooting gas penetrates even higher into the low photosphere. An wide transition layer separates the convective from the
oscillatory layers in the higher photosphere.Comment: Accepted for publication in Astrophysics and Space Science; 18 pages,
12 figures, 2 tables; typos correcte
Benzoic acid–3,4-bis[(pyridin-3-ylmethyl)amino]cyclobut-3-ene-1,2-dione (1/2)
In the title co-crystal, C16H14N4O2·2C7H6O2, the 3,4-bis[(pyridin-3-ylmethyl)amino]cyclobut-3-ene-1,2-dione squareamide molecules assemble into chains along the b axis via N—H⋯O hydrogen bonds. The benzoic acid molecules then hydrogen bond to the pyridine rings via O—H⋯N hydrogen bonds, supported by weaker C—H⋯O hydrogen bonds, forming extended ribbons. The asymmetric unit consists of a half squareamide molecule, sitting on a special position around a twofold axis, and one benzoic acid molecule on a general position
Identification of a new cocrystal of citric acid and paracetamol of pharmaceutical relevance
Cocrystals have been increasingly recognized as an attractive alternative delivery form for solid drug products. In this work, Raman spectroscopy, X-ray powder diffraction/X-ray crystallography, and differential scanning calorimetry have been used to study the phenomenon of cocrystal formation in stoichiometric mixtures of citric acid with paracetamol. Raman spectroscopy was particularly useful for the characterization of the products and was used to determine the nature of the interactions in the cocrystals. It was observed that little change in the vibrational modes associated with the phenyl groups of the respective reactants took place upon cocrystal formation but changes in intensities of the vibrational modes associated with the amide and the carboxylic acid groups were observed upon cocrystal formation. Several new vibrational bands were identified in the cocrystal which were not manifest in the raw material and could be used as diagnostic features of cocrystal formation. An understanding of the effects of cocrystal formation on the vibrational modes was obtained by the complete assignment of the spectra of the starting materials and of the cocrystal component. The results show that the cocrystals was obtained in a 2:1 molar ratio of paracetamol to citric acid. The asymmetric unit of the crystal contains two paracetamol molecules hydrogen-bonded to the citric acid; one of these acts as a phenolic-OH hydrogen bond donor to the carbonyl of a carboxylic acid arm of citric acid. In contrast, the other phenolic-OH acts as a hydrogen bond acceptor from the quaternary C-OH of citric acid. © 2011 The Royal Society of Chemistry
Importance of Spin-Orbit Coupling in Hybrid Organic/Inorganic Perovskites for Photovoltaic Applications
International audienceThree-dimensional (3D) hybrid perovskites CH3NH3PbX3 (X = Br, I) have recently been suggested as new key materials for dye-sensitized solar cells (DSSC) leading to a new class of hybrid semiconductor photovoltaic cells (HSPC). Thanks to density functional theory calculations, we show that the band gap of these compounds is dominated by a giant spin-orbit coupling (SOC) in the conduction-band (CB). At room temperature, direct and isotropic optical transitions are associated to a spin-orbit split-off band related to the triply degenerated CB of the cubic lattice without SOC. Due to the strong SOC, the electronic states involved in the optical absorption are only slightly perturbed by local distortions of the lattice. In addition, band offset calculations confirm that CH3NH3PbX3/TiO2 is a reference material for driving electrons toward the electrode in HSPC. Two-dimensional (2D) hybrids are also suggested to reach further flexibility for light conversion efficiency. Our study affords the basic concepts to reach the level of knowledge already attained for optoelectronic properties of conventional semiconductors
- …