74 research outputs found

    Validation of the performance of a GMO multiplex screening assay based on microarray detection

    Get PDF
    A new screening method for the detection and identification of GMO, based on the use of multiplex PCR followed by microarray, has been developed and is presented. The technology is based on the identification of quite ubiquitous GMO genetic target elements first amplified by PCR, followed by direct hybridisation of the amplicons on a predefined microarray (DualChip® GMO, Eppendorf, Germany). The validation was performed within the framework of a European project (Co-Extra, contract no 007158) and in collaboration with 12 laboratories specialised in GMO detection. The present study reports the strategy and the results of an ISO complying validation of the method carried out through an inter-laboratory study. Sets of blind samples were provided consisting of DNA reference materials covering all the elements detectable by specific probes present on the array. The GMO concentrations varied from 1% down to 0.045%. In addition, a mixture of two GMO events (0.1% RRS diluted in 100% TOPAS19/2) was incorporated in the study to test the robustness of the assay in extreme conditions. Data were processed according to ISO 5725 standard. The method was evaluated with predefined performance criteria with respect to the EC CRL method acceptance criteria. The overall method performance met the acceptance criteria; in particular, the results showed that the method is suitable for the detection of the different target elements at 0.1% concentration of GMO with a 95% accuracy rate. This collaborative trial showed that the method can be considered as fit for the purpose of screening with respect to its intra- and inter-laboratory accuracy. The results demonstrated the validity of combining multiplex PCR with array detection as provided by the DualChip® GMO (Eppendorf, Germany) for the screening of GMO. The results showed that the technology is robust, practical and suitable as a screening too

    Exact Analytic Solutions for the Rotation of an Axially Symmetric Rigid Body Subjected to a Constant Torque

    Get PDF
    New exact analytic solutions are introduced for the rotational motion of a rigid body having two equal principal moments of inertia and subjected to an external torque which is constant in magnitude. In particular, the solutions are obtained for the following cases: (1) Torque parallel to the symmetry axis and arbitrary initial angular velocity; (2) Torque perpendicular to the symmetry axis and such that the torque is rotating at a constant rate about the symmetry axis, and arbitrary initial angular velocity; (3) Torque and initial angular velocity perpendicular to the symmetry axis, with the torque being fixed with the body. In addition to the solutions for these three forced cases, an original solution is introduced for the case of torque-free motion, which is simpler than the classical solution as regards its derivation and uses the rotation matrix in order to describe the body orientation. This paper builds upon the recently discovered exact solution for the motion of a rigid body with a spherical ellipsoid of inertia. In particular, by following Hestenes' theory, the rotational motion of an axially symmetric rigid body is seen at any instant in time as the combination of the motion of a "virtual" spherical body with respect to the inertial frame and the motion of the axially symmetric body with respect to this "virtual" body. The kinematic solutions are presented in terms of the rotation matrix. The newly found exact analytic solutions are valid for any motion time length and rotation amplitude. The present paper adds further elements to the small set of special cases for which an exact solution of the rotational motion of a rigid body exists.Comment: "Errata Corridge Postprint" version of the journal paper. The following typos present in the Journal version are HERE corrected: 1) Definition of \beta, before Eq. 18; 2) sign in the statement of Theorem 3; 3) Sign in Eq. 53; 4)Item r_0 in Eq. 58; 5) Item R_{SN}(0) in Eq. 6

    Systems of Hess-Appel'rot type

    Full text link
    We construct higher-dimensional generalizations of the classical Hess-Appel'rot rigid body system. We give a Lax pair with a spectral parameter leading to an algebro-geometric integration of this new class of systems, which is closely related to the integration of the Lagrange bitop performed by us recently and uses Mumford relation for theta divisors of double unramified coverings. Based on the basic properties satisfied by such a class of systems related to bi-Poisson structure, quasi-homogeneity, and conditions on the Kowalevski exponents, we suggest an axiomatic approach leading to what we call the "class of systems of Hess-Appel'rot type".Comment: 40 pages. Comm. Math. Phys. (to appear

    Evaluation of three parasite lactate dehydrogenase-based rapid diagnostic tests for the diagnosis of falciparum and vivax malaria

    Get PDF
    BACKGROUND: In areas where non-falciparum malaria is common rapid diagnostic tests (RDTs) capable of distinguishing malaria species reliably are needed. Such tests are often based on the detection of parasite lactate dehydrogenase (pLDH). METHODS: In Dawei, southern Myanmar, three pLDH based RDTs (CareStart Malaria pLDH (Pan), CareStart Malaria pLDH (Pan, Pf) and OptiMAL-IT)were evaluated in patients presenting with clinically suspected malaria. Each RDT was read independently by two readers. A subset of patients with microscopically confirmed malaria had their RDTs repeated on days 2, 7 and then weekly until negative. At the end of the study, samples of study batches were sent for heat stability testing. RESULTS: Between August and November 2007, 1004 patients aged between 1 and 93 years were enrolled in the study. Slide microscopy (the reference standard) diagnosed 213 Plasmodium vivax (Pv) monoinfections, 98 Plasmodium falciparum (Pf) mono-infections and no malaria in 650 cases. The sensitivities (sens) and specificities (spec), of the RDTs for the detection of malaria were- CareStart Malaria pLDH (Pan) test: sens 89.1% [CI95 84.2-92.6], spec 97.6% [CI95 96.5-98.4]. OptiMal-IT: Pf+/- other species detection: sens 95.2% [CI95 87.5-98.2], spec 94.7% [CI95 93.3-95.8]; non-Pf detection alone: sens 89.6% [CI95 83.6-93.6], spec 96.5% [CI95 94.8-97.7]. CareStart Malaria pLDH (Pan, Pf): Pf+/- other species: sens 93.5% [CI95 85.4-97.3], spec 97.4% [95.9-98.3]; non-Pf: sens 78.5% [CI95 71.1-84.4], spec 97.8% [CI95 96.3-98.7]. Inter-observer agreement was excellent for all tests (kappa > 0.9). The median time for the RDTs to become negative was two days for the CareStart Malaria tests and seven days for OptiMAL-IT. Tests were heat stable up to 90 days except for OptiMAL-IT (Pf specific pLDH stable to day 20 at 35 degrees C). CONCLUSION: None of the pLDH-based RDTs evaluated was able to detect non-falciparum malaria with high sensitivity, particularly at low parasitaemias. OptiMAL-IT performed best overall and would perform best in an area of high malaria prevalence among screened fever cases. However, heat stability was unacceptable and the number of steps to perform this test is a significant drawback in the field. A reliable, heat-stable, highly sensitive RDT, capable of diagnosing all Plasmodium species has yet to be identified

    A note on the periodic orbits of a self excited rigid body

    Get PDF
    The aim of the present paper is to study the periodic orbits of a perturbed self excited rigid body with a fixed point. For studying these periodic orbits we shall use averaging theory of first order.The first and third authors were partially supported by MICINN/FEDER grant number MTM2011-22587. The second author was partially supported by AYA 2010 Ministerio de Ciencia e Innovación grant number 22039-C02-01 and ACOMP Cosellería de Educación de la Generalitat Valenciana grant number 2012/128
    corecore