84 research outputs found

    Ernest Hemingway and James Joyce: a brief analysis of the modernist traits in their short stories

    Get PDF
    This paper brings a brief analysis of the English works: “Hills like white elephants” (1927) and “One reader writes” (1933) by Ernest Hemingway and “The sisters” (1914) by James Joyce, in order to illustrate the features that emerged with the modernist movement, considering changes related to the ways of making literature. To this end, this work provides a close reading of the three short stories bearing in mind the relation between fact and fiction and how fiction depicts social, historical, and/or political facts. Hemingway‟s texts and Joyce‟s “The sisters” are powerful examples of the literary changes raised by modernism. The works of both writers are only the tip of the iceberg to provoke a reflection in the reader about the changes in the ways of making literature and how language is used in order to depict social events through fiction

    Cuticular wax coverage and its transpiration barrier properties in Quercus coccifera L. leaves: does the environment matter?

    Get PDF
    Plants prevent uncontrolled water loss by synthesizing, depositing and maintaining a hydrophobic layer over their primary aerial organs-the plant cuticle. Quercus coccifera L. can plastically respond to environmental conditions at the cuticular level. When exposed to hot summer conditions with high vapour-pressure deficit (VPD) and intense solar radiation (Mediterranean atmospheric conditions; MED), this plant species accumulates leaf cuticular waxes even over the stomata, thereby decreasing transpirational water loss. However, under mild summer conditions with moderate VPD and regular solar radiation (temperate atmospheric conditions; TEM), this effect is sharply reduced. Despite the ecophysiological importance of the cuticular waxes of Q. coccifera, the wax composition and its contribution to avoiding uncontrolled dehydration remain unknown. Thus, we determined several leaf traits for plants exposed to both MED and TEM conditions. Further, we qualitatively and quantitatively investigated the cuticular lipid composition by gas chromatography. Finally, we measured the minimum leaf conductance (gmin) as an indicator of the efficacy of the cuticular transpiration barrier. The MED leaves were smaller, stiffer and contained a higher load of cuticular lipids than TEM leaves. The amounts of leaf cutin and cuticular waxes of MED plants were 1.4 times and 2.6 times higher than that found for TEM plants, respectively. In detail, MED plants produced higher amounts of all compound classes of cuticular waxes, except for the equivalence of alkanoic acids. Although MED leaves contained higher cutin and cuticular wax loads, the gmin was not different between the two habitats. Our findings suggest that the qualitative accumulation of equivalent cuticular waxes might compensate for the higher wax amount of MED plants, thereby contributing equally to the efficacy of the cuticular transpirational barrier of Q. coccifera. In conclusion, we showed that atmospheric conditions profoundly affect the cuticular lipid composition of Q. coccifera leaves, but do not alter its transpiration barrier properties

    Cuticular wax coverage and its transpiration barrier properties in Quercus coccifera L. leaves: does the environment matter?

    Get PDF
    Plants prevent uncontrolled water loss by synthesizing, depositing and maintaining a hydrophobic layer over their primary aerial organs-the plant cuticle. Quercus coccifera L. can plastically respond to environmental conditions at the cuticular level. When exposed to hot summer conditions with high vapour-pressure deficit (VPD) and intense solar radiation (Mediterranean atmospheric conditions; MED), this plant species accumulates leaf cuticular waxes even over the stomata, thereby decreasing transpirational water loss. However, under mild summer conditions with moderate VPD and regular solar radiation (temperate atmospheric conditions; TEM), this effect is sharply reduced. Despite the ecophysiological importance of the cuticular waxes of Q. coccifera, the wax composition and its contribution to avoiding uncontrolled dehydration remain unknown. Thus, we determined several leaf traits for plants exposed to both MED and TEM conditions. Further, we qualitatively and quantitatively investigated the cuticular lipid composition by gas chromatography. Finally, we measured the minimum leaf conductance (gmin) as an indicator of the efficacy of the cuticular transpiration barrier. The MED leaves were smaller, stiffer and contained a higher load of cuticular lipids than TEM leaves. The amounts of leaf cutin and cuticular waxes of MED plants were 1.4 times and 2.6 times higher than that found for TEM plants, respectively. In detail, MED plants produced higher amounts of all compound classes of cuticular waxes, except for the equivalence of alkanoic acids. Although MED leaves contained higher cutin and cuticular wax loads, the gmin was not different between the two habitats. Our findings suggest that the qualitative accumulation of equivalent cuticular waxes might compensate for the higher wax amount of MED plants, thereby contributing equally to the efficacy of the cuticular transpirational barrier of Q. coccifera. In conclusion, we showed that atmospheric conditions profoundly affect the cuticular lipid composition of Q. coccifera leaves, but do not alter its transpiration barrier properties

    An Abraded Surface Of Oxorubicin-loaded Surfactant-containing Drug Delivery Systems Effectively Reduces The Survival Of Carcinoma Cells

    Get PDF
    An effective antitumor remedy is yet to be developed. All previous approaches for a targeted delivery of anticancer medicine have relied on trial and error. The goal of this study was to use structural insights gained from the study of delivery systems and malignant cells to provide for a systematic approach to the development of next-generation drugs. We used doxorubicin (Dox) liposomal formulations. We assayed for cytotoxicity via the electrical current exclusion method. Dialysis of the samples yielded information about their drug release profiles. Information about the surface of the delivery systems was obtained through synchrotron small-angle X-ray scattering (SAXS) measurements. SAXS measurements revealed that Dox-loading yielded an abraded surface of our Dox liposomal formulation containing soybean oil, which also correlated with an effective reduction of the survival of carcinoma cells. Furthermore, a dialysis assay revealed that a higher burst of Dox was released from soybean oil-containing preparations within the first five hours. We conclude from our results that an abraded surface of Dox-loaded drug delivery system increases their efficacy. The apparent match between surface geometry of drug delivery systems and target cells is suggested as a steppingstone for refined development of drug delivery systems. This is the first study to provide a systematic approach to developing next-generation drug carrier systems using structural insights to guide the development of next-generation drug delivery systems with increased efficacy and reduced side effects.4

    Peridynamic modelling of cracking in TRISO particles for high temperature reactors

    Get PDF
    A linear-elastic computer simulation (model) for a single particle of TRISO fuel has been built using a bond-based peridynamic technique implemented in the finite element code ‘Abaqus’. The model is able to consider the elastic and thermal strains in each layer of the particle and to simulate potential fracture both within and between layers. The 2D cylindrical model makes use of a plane stress approximation perpendicular to the plane modelled. The choice of plane stress was made by comparison of 2D and 3D finite element models. During an idealised ramp to normal operating power for a kernel of 0.267 W and a bulk fuel temperature of 1305 K, cracks initiate in the buffer near to the kernel-buffer interface and propagate towards the buffer-iPyC coating interface, but do not penetrate the iPyC and containment of the fission products is maintained. In extreme accident conditions, at around 600% (1.60 W) power during a power ramp at 100% power (0.267 W) per second, cracks were predicted to form on the kernel side of the kernel-buffer interface, opposite existing cracks in the buffer. These were predicted to then only grow further with further increases in power. The SiC coating was predicted to subsequently fail at a power of 940% (2.51 W), with cracks formed rapidly at the iPyC-SiC interface and propagating in both directions. These would overcome the containment to fission gas release offered by the SiC ‘pressure vessel’. The extremely high power at which failure was predicted indicates the potential safety benefits of the proposed high temperature reactor design based on TRISO fuel

    Peridynamic modelling of cracking in TRISO particles for high temperature reactors

    Get PDF
    A linear-elastic computer simulation (model) for a single particle of TRISO fuel has been built using a bond-based peridynamic technique implemented in the finite element code ‘Abaqus’. The model is able to consider the elastic and thermal strains in each layer of the particle and to simulate potential fracture both within and between layers. The 2D cylindrical model makes use of a plane stress approximation perpendicular to the plane modelled. The choice of plane stress was made by comparison of 2D and 3D finite element models. During an idealised ramp to normal operating power for a kernel of 0.267 W and a bulk fuel temperature of 1305 K, cracks initiate in the buffer near to the kernel-buffer interface and propagate towards the buffer-iPyC coating interface, but do not penetrate the iPyC and containment of the fission products is maintained. In extreme accident conditions, at around 600% (1.60 W) power during a power ramp at 100% power (0.267 W) per second, cracks were predicted to form on the kernel side of the kernel-buffer interface, opposite existing cracks in the buffer. These were predicted to then only grow further with further increases in power. The SiC coating was predicted to subsequently fail at a power of 940% (2.51 W), with cracks formed rapidly at the iPyC-SiC interface and propagating in both directions. These would overcome the containment to fission gas release offered by the SiC ‘pressure vessel’. The extremely high power at which failure was predicted indicates the potential safety benefits of the proposed high temperature reactor design based on TRISO fuel

    Measurement of residual stresses in surrogate coated nuclear fuel particles using ring-core focussed ion beam digital image correlation

    Get PDF
    Coated fuel particles, most commonly tri-structural isotropic (TRISO), are intended for application in several designs of advanced nuclear reactors. A complete understanding of the residual stresses and local properties of these particles through their entire lifecycle is required to inform fuel element manufacturing, reactor operation, accident scenarios, and reprocessing. However, there is very little experimental data available in the literature on the magnitude of residual stresses in the individual coating layers of these particles. This work applies ring-core focussed ion beam milling combined with digital image correlation analysis (FIB-DIC) to cross-sections of TRISO and pyrolytic carbon coatings in surrogate coated fuel particles to evaluate the residual stresses. Tensile residual hoop stresses are identified in both pyrolytic carbon layers, while silicon carbide experiences a compressive residual hoop stress. Note that these residual stresses, which were not accounted for in the models reported in open literature, have magnitudes comparable to the stresses predicted to arise in real fuel particles during service. A 2D linear-elastic continuum-based finite element analysis has been conducted to investigate the stress relaxation phenomena caused by sectioning stressed coatings on spherical particles. The FIB-DIC method established here is independent of radiation defects and can be applied to irradiated TRISO particles to retrieve first-hand information regarding the residual stress evolution during service

    BRCA1 and BRCA2 Germline Mutations in Malaysian Women with Early-Onset Breast Cancer without a Family History

    Get PDF
    BACKGROUND: In Asia, breast cancer is characterised by an early age of onset: In Malaysia, approximately 50% of cases occur in women under the age of 50 years. A proportion of these cases may be attributable, at least in part, to genetic components, but to date, the contribution of genetic components to breast cancer in many of Malaysia's ethnic groups has not been well-characterised. METHODOLOGY: Given that hereditary breast carcinoma is primarily due to germline mutations in one of two breast cancer susceptibility genes, BRCA1 and BRCA2, we have characterised the spectrum of BRCA mutations in a cohort of 37 individuals with early-onset disease (<or=40 years) and no reported family history. Mutational analysis of BRCA1 and BRCA2 was conducted by full sequencing of all exons and intron-exon junctions. CONCLUSIONS: Here, we report a total of 14 BRCA1 and 17 BRCA2 sequence alterations, of which eight are novel (3 BRCA1 and 5 BRCA2). One deleterious BRCA1 mutation and 2 deleterious BRCA2 mutations, all of which are novel mutations, were identified in 3 of 37 individuals. This represents a prevalence of 2.7% and 5.4% respectively, which is consistent with other studies in other Asian ethnic groups (4-9%)
    • 

    corecore