2,608 research outputs found

    Forensics in Industrial Control System: A Case Study

    Full text link
    Industrial Control Systems (ICS) are used worldwide in critical infrastructures. An ICS system can be a single embedded system working stand-alone for controlling a simple process or ICS can also be a very complex Distributed Control System (DCS) connected to Supervisory Control And Data Acquisition (SCADA) system(s) in a nuclear power plant. Although ICS are widely used to-day, there are very little research on the forensic acquisition and analyze ICS artefacts. In this paper we present a case study of forensics in ICS where we de-scribe a method of safeguarding important volatile artefacts from an embedded industrial control system and several other source

    Exponential Separation of Quantum and Classical Online Space Complexity

    Full text link
    Although quantum algorithms realizing an exponential time speed-up over the best known classical algorithms exist, no quantum algorithm is known performing computation using less space resources than classical algorithms. In this paper, we study, for the first time explicitly, space-bounded quantum algorithms for computational problems where the input is given not as a whole, but bit by bit. We show that there exist such problems that a quantum computer can solve using exponentially less work space than a classical computer. More precisely, we introduce a very natural and simple model of a space-bounded quantum online machine and prove an exponential separation of classical and quantum online space complexity, in the bounded-error setting and for a total language. The language we consider is inspired by a communication problem (the set intersection function) that Buhrman, Cleve and Wigderson used to show an almost quadratic separation of quantum and classical bounded-error communication complexity. We prove that, in the framework of online space complexity, the separation becomes exponential.Comment: 13 pages. v3: minor change

    Adrift upon a salinity-stratified sea

    Get PDF
    The structure and variability of upper-ocean properties in the Bay of Bengal (BoB) modulate air-sea interactions, which profoundly influence the pattern and intensity of monsoonal precipitation across the Indian subcontinent. In turn, the bay receives a massive amount of freshwater through river input at its boundaries and from heavy local rainfall, leading to a salinity-stratified surface ocean and shallow mixed layers. Small-scale oceanographic processes that drive variability in near-surface BoB waters complicate the tight coupling between ocean and atmosphere implicit in this seasonal feedback. Unraveling these ocean dynamics and their impact on air-sea interactions is critical to improving the forecasting of intraseasonal variability in the southwest monsoon. To that end, we deployed a wave-powered, rapidly profiling system capable of measuring the structure and variability of the upper 100 m of the BoB. The evolution of upper-ocean structure along the trajectory of the instrument’s roughly two-week drift, along with direct estimates of vertical fluxes of salt and heat, permit assessment of the contributions of various phenomena to temporal and spatial variability in the surface mixed layer depth. Further, these observations suggest that the particular “barrier-layer” stratification found in the BoB may decrease the influence of the wind on mixing processes in the interior, thus isolating the upper ocean from the interior below, and tightening its coupling to the atmosphere abov

    Quantum Algorithm for Dynamic Programming Approach for DAGs. Applications for Zhegalkin Polynomial Evaluation and Some Problems on DAGs

    Full text link
    In this paper, we present a quantum algorithm for dynamic programming approach for problems on directed acyclic graphs (DAGs). The running time of the algorithm is O(n^mlog⁥n^)O(\sqrt{\hat{n}m}\log \hat{n}), and the running time of the best known deterministic algorithm is O(n+m)O(n+m), where nn is the number of vertices, n^\hat{n} is the number of vertices with at least one outgoing edge; mm is the number of edges. We show that we can solve problems that use OR, AND, NAND, MAX and MIN functions as the main transition steps. The approach is useful for a couple of problems. One of them is computing a Boolean formula that is represented by Zhegalkin polynomial, a Boolean circuit with shared input and non-constant depth evaluating. Another two are the single source longest paths search for weighted DAGs and the diameter search problem for unweighted DAGs.Comment: UCNC2019 Conference pape

    Relative hyperbolicity and similar properties of one-generator one-relator relative presentations with powered unimodular relator

    Full text link
    A group obtained from a nontrivial group by adding one generator and one relator which is a proper power of a word in which the exponent-sum of the additional generator is one contains the free square of the initial group and almost always (with one obvious exception) contains a non-abelian free subgroup. If the initial group is involution-free or the relator is at least third power, then the obtained group is SQ-universal and relatively hyperbolic with respect to the initial group.Comment: 11 pages. A Russian version of this paper is at http://mech.math.msu.su/department/algebra/staff/klyachko/papers.htm V3: revised following referee's comment

    Multi frequency evaporative cooling to BEC in a high magnetic field

    Get PDF
    We demonstrate a way to circumvent the interruption of evaporative cooling observed at high bias field for 87^{87}Rb atoms trapped in the (F=2, m=+2) ground state. Our scheme uses a 3-frequencies-RF-knife achieved by mixing two RF frequencies. This compensates part of the non linearity of the Zeeman effect, allowing us to achieve BEC where standard 1-frequency-RF-knife evaporation method did not work. We are able to get efficient evaporative cooling, provided that the residual detuning between the transition and the RF frequencies in our scheme is smaller than the power broadening of the RF transitions at the end of the evaporation ramp.Comment: 12 pages, 2 figure

    The origin of the anomalously strong influence of out-of-plane disorder on high-Tc superconductivity

    Full text link
    The electronic structure of Bi2Sr2-xRxCuOy(R=La, Eu) near the (pi,0) point of the first Brillouin zone was studied by means of angle-resolved photoemission spectroscopy (ARPES). The temperature T* above which the pseudogap structure in the ARPES spectrum disappears was found to have an R dependence that is opposite to that ofthe superconducting transition temperature Tc. This indicates that the pseudogap state is competing with high-Tc superconductivity, and the large Tc suppression observed with increasing the out-of-plane disorder is due to the stabilization of the pseudogap state.Comment: 4 pages, 4 figure

    Double diffusion, shear instabilities, and heat impacts of a pacific summer water intrusion in the Beaufort Sea

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fine, E., MacKinnon, J., Alford, M., Middleton, L., Taylor, J., Mickett, J., Cole, S., Couto, N., Boyer, A., & Peacock, T. Double diffusion, shear instabilities, and heat impacts of a pacific summer water intrusion in the Beaufort Sea. Journal of Physical Oceanography, 52(2), (2022): 189–203, https://doi.org/10.1175/jpo-d-21-0074.1.Pacific Summer Water eddies and intrusions transport heat and salt from boundary regions into the western Arctic basin. Here we examine concurrent effects of lateral stirring and vertical mixing using microstructure data collected within a Pacific Summer Water intrusion with a length scale of ∌20 km. This intrusion was characterized by complex thermohaline structure in which warm Pacific Summer Water interleaved in alternating layers of O(1) m thickness with cooler water, due to lateral stirring and intrusive processes. Along interfaces between warm/salty and cold/freshwater masses, the density ratio was favorable to double-diffusive processes. The rate of dissipation of turbulent kinetic energy (Δ) was elevated along the interleaving surfaces, with values up to 3 × 10−8 W kg−1 compared to background Δ of less than 10−9 W kg−1. Based on the distribution of Δ as a function of density ratio Rρ, we conclude that double-diffusive convection is largely responsible for the elevated Δ observed over the survey. The lateral processes that created the layered thermohaline structure resulted in vertical thermohaline gradients susceptible to double-diffusive convection, resulting in upward vertical heat fluxes. Bulk vertical heat fluxes above the intrusion are estimated in the range of 0.2–1 W m−2, with the localized flux above the uppermost warm layer elevated to 2–10 W m−2. Lateral fluxes are much larger, estimated between 1000 and 5000 W m−2, and set an overall decay rate for the intrusion of 1–5 years.This work was supported by ONR Grant N00014-16-1-2378 and NSF Grants PLR 14-56705 and PLR-1303791, NSF Graduate Research Fellowship Grant DGE-1650112, as well as by the Postdoctoral Scholar Program at Woods Hole Oceanographic Institution, with funding provided by the Weston Howland Jr. Postdoctoral Scholarship

    Least Upper Delay Bound for VBR Flows in Networks-on- Chip with Virtual Channels

    Get PDF
    Real-time applications such as multimedia and gaming require stringent performance guarantees, usually enforced by a tight upper bound on the maximum end-to-end delay. For FIFO multiplexed on-chip packet switched networks we consider worst-case delay bounds for Variable Bit-Rate (VBR) flows with aggregate scheduling, which schedules multiple flows as an aggregate flow. VBR Flows are characterized by a maximum transfer size, peak rate, burstiness, and average sustainable rate. Based on network calculus, we present and prove theorems to derive per-flow end-to-end Equivalent Service Curves (ESC) which are in turn used for computing Least Upper Delay Bounds (LUDBs) of individual flows. In a realistic case study we find that the end-to-end delay bound is up to 46.9% more accurate than the case without considering the traffic peak behavior. Likewise, results also show similar improvements for synthetic traffic patterns. The proposed methodology is implemented in C++ and has low run-time complexity, enabling quick evaluation for large and complex SoCs
    • 

    corecore