7 research outputs found

    Linearized esculentin-2EM shows pH dependent antibacterial activity with an alkaline optimum

    Get PDF
    Here the hypothesis that linearized esculentin 2EM (E2EM-lin) from Glandirana emeljanovi possesses pH dependent activity is investigated. The peptide showed weak activity against Gram-negative bacteria (MLCs ≥ 75.0 μM) but potent efficacy towards Gram-positive bacteria (MLCs ≤ 6.25 μM). E2EM-lin adopted an α-helical structure in the presence of bacterial membranes that increased as pH was increased from 6 to 8 (↑ 15.5 to 26.9 %), while similar increases in pH enhanced the ability of the peptide to penetrate (↑ 2.3 to 5.1 mN m-1) and lyse (↑ 15.1 to 32.5%) these membranes. Theoretical analysis predicted that this membranolytic mechanism involved a tilted segment, that increased along the α-helical long axis of E2EM-lin (1-23) in the N → C direction, with - increasing overall from circa - 0.8 to - 0.3. In combination, these data showed that E2EM-lin killed bacteria via novel mechanisms that were enhanced by alkaline conditions and involved the formation of tilted and membranolytic, α-helical structure. The preference of E2EM-lin for Gram-positive bacteria over Gram-negative organisms was primarily driven by the superior ability of phosphatidylglycerol to induce α-helical structure in the peptide as compared to phosphatidylethanolamine. These data were used to generate a novel pore-forming model for the membranolytic activity of E2EM-lin, which would appear to be the first, major reported instance of pH dependent AMPs with alkaline optima using tilted structure to drive a pore-forming process. It is proposed that E2EM-lin has the potential for development to serve purposes ranging from therapeutic usage, such as chronic wound disinfection, to food preservation by killing food spoilage organisms

    The Demand for New Antibiotics: Antimicrobial Peptides, Nanoparticles, and Combinatorial Therapies as Future Strategies in Antibacterial Agent Design

    Get PDF
    The inappropriate use of antibiotics and an inadequate control of infections have led to the emergence of resistant strains which represent a major threat to public health and the global economy. Therefore, research and development of a new generation of antimicrobials to mitigate the spread of antibiotic resistance has become imperative. Current research and technology developments have promoted the improvement of antimicrobial agents that can selectively interact with a target site (e.g., a gene or a cellular process) or a specific pathogen. Antimicrobial peptides and metal nanoparticles exemplify a novel approach to treat infectious diseases. Nonetheless, combinatorial treatments have been recently considered as an excellent platform to design and develop the next generation of antibacterial agents. The combination of different drugs offers many advantages over their use as individual chemical moieties; these include a reduction in dosage of the individual drugs, fewer side effects compared to the monotherapy, reduced risk for the development of drug resistance, a better combined response compared to the effect of the individual drugs (synergistic effects), wide- spectrum antibacterial action, and the ability to attack simultaneously multiple target sites, in many occasions leading to an increased antibacterial effect. The selection of the appropriate combinatorial treatment is critical for the successful treatment of infections. Therefore, the design of combinatorial treatments provides a pathway to develop antimicrobial therapeutics with broad-spectrum antibacterial action, bactericidal instead of bacteriostatic mechanisms of action, and better efficacy against multidrug- resistant bacteria

    Nanomaterial-Based Antifungal Therapies to Combat Fungal Diseases Aspergillosis, Coccidioidomycosis, Mucormycosis, and Candidiasis

    Get PDF
    Over the last years, invasive infections caused by filamentous fungi have constituted a serious threat to public health worldwide. Aspergillus, Coccidioides, Mucorales (the most common filamentous fungi), and Candida auris (non-filamentous fungus) can cause infections in humans. They are able to cause critical life-threatening illnesses in immunosuppressed individuals, patients with HIV/AIDS, uncontrolled diabetes, hematological diseases, transplantation, and chemotherapy. In this review, we describe the available nanoformulations (both metallic and polymers-based nanoparticles) developed to increase efficacy and reduce the number of adverse effects after the administration of conventional antifungals. To treat aspergillosis and infections caused by Candida, multiple strategies have been used to develop new therapeutic alternatives, such as incorporating coating materials, complexes synthesized by green chemistry, or coupled with polymers. However, the therapeutic options for coccidioidomycosis and mucormycosis are limited; most of them are in the early stages of development. Therefore, more research needs to be performed to develop new therapeutic alternatives that contribute to the progress of this field

    Synthesis and design of Ag–Fe bimetallic nanoparticles as antimicrobial synergistic combination therapies against clinically relevant pathogens

    Get PDF
    The inappropriate use of antibiotics and the inadequate control of infections have led to the emergence of drug-resistant strains. In recent years, metallo-pharmaceutics and metallic nanoparticles have been proposed as potential alternative antimicrobials due to their broad-spectrum antimicrobial properties. Moreover, recent fndings have shown that combinations of transition metal compounds can exhibit synergistic antimicrobial properties. Therefore, the synthesis and design of bimetallic nanoparticles is a feld worth exploring to harness the interactions between groups of metals and organic complex structures found in diferent microbial targets, towards the development of more efcient combinatorial antimicrobials composed of synergistic metals. In this study, we present a green synthesis of Ag–Fe bimetallic nanoparticles using an aqueous extract from the leaves of Gardenia jasminoides. The characterization of the nanoparticles demonstrated that the synthesis methodology produces homogenously distributed core–shell Ag–Fe structures with spherical shapes and average diameter sizes of 13 nm (± 6.3 nm). The Ag–Fe bimetallic nanoparticles showed magnetic and antimicrobial properties; the latter were evaluated against six diferent, clinically relevant multi-drug-resistant microbial strains. The Ag–Fe bimetallic nanoparticles exhibited an antimicrobial (bactericidal) synergistic efect between the two metals composing the bimetallic nanoparticles compared to the efects of the mono-metallic nanoparticles against yeast and both Gram-positive and Gram-negative multidrug-resistant bacteria. Our results provide insight towards the design of bimetallic nanoparticles, synthesized through green chemistry methodologies, to develop synergistic combinatorial antimicrobials with possible applications in both industrial processes and the treatment of infections caused by clinically relevant drug-resistant strains
    corecore