93 research outputs found

    CFD Modelling coupled with Floating Structures and Mooring Dynamics for Offshore Renewable Energy Devices using the Proteus Simulation Toolkit

    Get PDF
    This is the author accepted manuscript. The final version is available from EWTEC via the link in this record.In this work, the coupling of novel opensource tools for simulating two-phase incompressible flow problems with fluid-structure interaction and mooring dynamics is presented. The open-source Computational Fluid Dynamics (CFD) toolkit Proteus is used for the simulations. Proteus solves the twophase Navier-Stokes equations using the Finite Element Method (FEM) and is fully coupled with an Arbitrary Lagrangian-Eulerian (ALE) formulation for mesh motion allowing solid body motion within the fluid domain. The multi-body dynamics solver, Chrono, is used for calculating rigid body motion and modelling dynamics of complex mooring systems. At each time step, Proteus computes the forces from the fluid acting on the rigid body necessary to find its displacement with Chrono which will be used as boundary conditions for mesh motion. Several verification and validation cases are presented here in order to prove the successful coupling between the two toolkits aforementioned. These test cases include wave sloshing in a tank, floating body dynamics under free and wave-induced motion for different degrees of freedom (DOFs), and mooring dynamics using beam element theory coupled with rigid body dynamics and collision detection. The successful validation of each component shows the potential of the coupled methodology to be used for assisting the design of offshore renewable energy devices.Support for this work was given by the Engineer Research and Development Center (ERDC) and HR Wallingford through the collaboration agreement (Contract No. W911NF-15-2-0110). The authors also acknowledge support for the IDCORE program from the Energy Technologies Institute and the Research Councils Energy Programme (grant number EP/J500847/)

    Fast random wave generation in numerical tanks

    Get PDF
    Generating and absorbing random waves in numerical models is a challenging problem, in particular when meaningful wave statistics should be generated to meet design sea state requirements. The methodology presented herein allows for the generation of random wave fields (free surface elevation and velocities) to be reconstructed in time and in space by using window processing from a reference time series

    Advanced tools for modelling fluid interaction with coastal and marine structures

    Get PDF
    Due to the increasing availability of computational resources the Engineering and Research community is gradually moving towards using high fidelity Computational Fluid Dynamics (CFD) models for supporting technical design and specialized analysis. In this context, the CFD Toolkit Proteus is used to perform numerical modelling of physical processes pertaining to wave propagation within coastal and offshore environment and to fluid structure interaction

    BF Integrase Genes of HIV-1 Circulating in São Paulo, Brazil, with a Recurrent Recombination Region

    Get PDF
    Although some studies have shown diversity in HIV integrase (IN) genes, none has focused particularly on the gene evolving in epidemics in the context of recombination. The IN gene in 157 HIV-1 integrase inhibitor-naïve patients from the São Paulo State, Brazil, were sequenced tallying 128 of subtype B (23 of which were found in non-B genomes), 17 of subtype F (8 of which were found in recombinant genomes), 11 integrases were BF recombinants, and 1 from subtype C. Crucially, we found that 4 BF recombinant viruses shared a recurrent recombination breakpoint region between positions 4900 and 4924 (relative to the HXB2) that includes 2 gRNA loops, where the RT may stutter. Since these recombinants had independent phylogenetic origin, we argue that these results suggest a possible recombination hotspot not observed so far in BF CRF in particular, or in any other HIV-1 CRF in general. Additionally, 40% of the drug-naïve and 45% of the drug-treated patients had at least 1 raltegravir (RAL) or elvitegravir (EVG) resistance-associated amino acid change, but no major resistance mutations were found, in line with other studies. Importantly, V151I was the most common minor resistance mutation among B, F, and BF IN genes. Most codon sites of the IN genes had higher rates of synonymous substitutions (dS) indicative of a strong negative selection. Nevertheless, several codon sites mainly in the subtype B were found under positive selection. Consequently, we observed a higher genetic diversity in the B portions of the mosaics, possibly due to the more recent introduction of subtype F on top of an ongoing subtype B epidemics and a fast spread of subtype F alleles among the B population

    In Vitro Megakaryocyte Differentiation and Proplatelet Formation in Ph-Negative Classical Myeloproliferative Neoplasms: Distinct Patterns in the Different Clinical Phenotypes

    Get PDF
    Background: Ph-negative myeloproliferative neoplasms (MPNs) are clonal disorders that include primary myelofibrosis (PMF), polycythemia vera (PV) and essential thrombocythemia (ET). Although the pathogenesis of MPNs is still incompletely understood, an involvement of the megakaryocyte lineage is a distinctive feature. Methodology/Principal Findings: We analyzed the in vitro megakaryocyte differentiation and proplatelet formation in 30 PMF, 8 ET, 8 PV patients, and 17 healthy controls (CTRL). Megakaryocytes were differentiated from peripheral blood CD34+ or CD45+ cells in the presence of thrombopoietin. Megakaryocyte output was higher in MPN patients than in CTRL with no correlation with the JAK2 V617F mutation. PMF-derived megakaryocytes displayed nuclei with a bulbous appearance, were smaller than ET- or PV-derived megakaryocytes and formed proplatelets that presented several structural alterations. In contrast, ET- and PV-derived megakaryocytes produced more proplatelets with a striking increase in bifurcations and tips compared to both control and PMF. Proplatelets formation was correlated with platelet counts in patient peripheral blood. Patients with pre-fibrotic PMF had a pattern of megakaryocyte proliferation and proplatelet formation that was similar to that of fibrotic PMF and different from that of ET. Conclusions/Significance: In conclusion, MPNs are associated with high megakaryocyte proliferative potential. Profound differences in megakaryocyte morphology and proplatelet formation distinguish PMF, both fibrotic and prefibrotic, from ET and PV

    Intradermal influenza vaccination of healthy adults using a new microinjection system: a 3-year randomised controlled safety and immunogenicity trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intradermal vaccination provides direct and potentially more efficient access to the immune system via specialised dendritic cells and draining lymphatic vessels. We investigated the immunogenicity and safety during 3 successive years of different dosages of a trivalent, inactivated, split-virion vaccine against seasonal influenza given intradermally using a microinjection system compared with an intramuscular control vaccine.</p> <p>Methods</p> <p>In a randomised, partially blinded, controlled study, healthy volunteers (1150 aged 18 to 57 years at enrolment) received three annual vaccinations of intradermal or intramuscular vaccine. In Year 1, subjects were randomised to one of three groups: 3 μg or 6 μg haemagglutinin/strain/dose of inactivated influenza vaccine intradermally, or a licensed inactivated influenza vaccine intramuscularly containing 15 μg/strain/dose. In Year 2 subjects were randomised again to one of two groups: 9 μg/strain/dose intradermally or 15 μg intramuscularly. In Year 3 subjects were randomised a third time to one of two groups: 9 μg intradermally or 15 μg intramuscularly. Randomisation lists in Year 1 were stratified for site. Randomisation lists in Years 2 and 3 were stratified for site and by vaccine received in previous years to ensure the inclusion of a comparable number of subjects in a vaccine group at each centre each year. Immunogenicity was assessed 21 days after each vaccination. Safety was assessed throughout the study.</p> <p>Results</p> <p>In Years 2 and 3, 9 μg intradermal was comparably immunogenic to 15 μg intramuscular for all strains, and both vaccines met European requirements for annual licensing of influenza vaccines. The 3 μg and 6 μg intradermal formulations were less immunogenic than intramuscular 15 μg. Safety of the intradermal and intramuscular vaccinations was comparable in each year of the study. Injection site erythema and swelling was more common with the intradermal route.</p> <p>Conclusion</p> <p>An influenza vaccine with 9 μg of haemagglutinin/strain given using an intradermal microinjection system showed comparable immunogenic and safety profiles to a licensed intramuscular vaccine, and presents a promising alternative to intramuscular vaccination for influenza for adults younger than 60 years.</p> <p>Trial registration</p> <p>Clinicaltrials.gov NCT00703651.</p

    Proliferating Cell Nuclear Antigen (PCNA) Regulates Primordial Follicle Assembly by Promoting Apoptosis of Oocytes in Fetal and Neonatal Mouse Ovaries

    Get PDF
    Primordial follicles, providing all the oocytes available to a female throughout her reproductive life, assemble in perinatal ovaries with individual oocytes surrounded by granulosa cells. In mammals including the mouse, most oocytes die by apoptosis during primordial follicle assembly, but factors that regulate oocyte death remain largely unknown. Proliferating cell nuclear antigen (PCNA), a key regulator in many essential cellular processes, was shown to be differentially expressed during these processes in mouse ovaries using 2D-PAGE and MALDI-TOF/TOF methodology. A V-shaped expression pattern of PCNA in both oocytes and somatic cells was observed during the development of fetal and neonatal mouse ovaries, decreasing from 13.5 to 18.5 dpc and increasing from 18.5 dpc to 5 dpp. This was closely correlated with the meiotic prophase I progression from pre-leptotene to pachytene and from pachytene to diplotene when primordial follicles started to assemble. Inhibition of the increase of PCNA expression by RNA interference in cultured 18.5 dpc mouse ovaries strikingly reduced the apoptosis of oocytes, accompanied by down-regulation of known pro-apoptotic genes, e.g. Bax, caspase-3, and TNFα and TNFR2, and up-regulation of Bcl-2, a known anti-apoptotic gene. Moreover, reduced expression of PCNA was observed to significantly increase primordial follicle assembly, but these primordial follicles contained fewer guanulosa cells. Similar results were obtained after down-regulation by RNA interference of Ing1b, a PCNA-binding protein in the UV-induced apoptosis regulation. Thus, our results demonstrate that PCNA regulates primordial follicle assembly by promoting apoptosis of oocytes in fetal and neonatal mouse ovaries

    Reappearance of Minority K103N HIV-1 Variants after Interruption of ART Initiated during Primary HIV-1 Infection

    Get PDF
    BACKGROUND: In the Zurich Primary HIV infection study (ZPHI), minority drug-resistant HIV-1 variants were detected in some acutely HIV-1-infected patients prior to initiation of early antiretroviral therapy (ART). Here, we investigated the reappearance of minority K103N and M184V HIV-1 variants in these patients who interrupted efficient early ART after 8-27 months according to the study protocol. These mutations are key mutations conferring drug resistance to reverse transcriptase inhibitors and they belong to the most commonly transmitted drug resistance mutations. METHODOLOGY/PRINCIPAL FINDINGS: Early ART was offered to acutely HIV-1-infected patients enrolled in the longitudinal prospective ZPHI study. Six patients harboring and eleven patients not harboring drug-resistant viruses at low frequencies prior to ART were included in this substudy. Minority K103N and M184V HIV-1 variants were quantified in longitudinal plasma samples after treatment interruption by allele-specific real-time PCR. All 17 patients were infected with HIV-1 subtype B between 04/2003 and 09/2005 and received LPV/r+AZT+3TC during primary HIV-1 infection (PHI). Minority K103N HIV-1 variants reappeared after cessation of ART in two of four patients harboring this variant during PHI and even persisted in one of those patients at frequencies similar to the frequency observed prior to ART (<1%). The K103N mutation did not appear during treatment interruption in any other patient. Minority M184V HIV-1 variants were detected in two patients after ART interruption, one harboring and one not harboring these variants prior to ART. CONCLUSION: Minority K103N HIV-1 variants, present in acutely HIV-1 infected patients prior to early ART, can reappear and persist after interruption of suppressive ART containing two nucleoside/nucleotide analogue reverse transcriptase inhibitors and a ritonavir-boosted protease inhibitor. TRIAL REGISTRATION: Clinicaltrials.gov NCT00537966

    Characterization of Spontaneous Bone Marrow Recovery after Sublethal Total Body Irradiation: Importance of the Osteoblastic/Adipocytic Balance

    Get PDF
    Many studies have already examined the hematopoietic recovery after irradiation but paid with very little attention to the bone marrow microenvironment. Nonetheless previous studies in a murine model of reversible radio-induced bone marrow aplasia have shown a significant increase in alkaline phosphatase activity (ALP) prior to hematopoietic regeneration. This increase in ALP activity was not due to cell proliferation but could be attributed to modifications of the properties of mesenchymal stem cells (MSC). We thus undertook a study to assess the kinetics of the evolution of MSC correlated to their hematopoietic supportive capacities in mice treated with sub lethal total body irradiation. In our study, colony-forming units – fibroblasts (CFU-Fs) assay showed a significant MSC rate increase in irradiated bone marrows. CFU-Fs colonies still possessed differentiation capacities of MSC but colonies from mice sacrificed 3 days after irradiation displayed high rates of ALP activity and a transient increase in osteoblastic markers expression while pparγ and neuropilin-1 decreased. Hematopoietic supportive capacities of CFU-Fs were also modified: as compared to controls, irradiated CFU-Fs significantly increased the proliferation rate of hematopoietic precursors and accelerated the differentiation toward the granulocytic lineage. Our data provide the first evidence of the key role exerted by the balance between osteoblasts and adipocytes in spontaneous bone marrow regeneration. First, (pre)osteoblast differentiation from MSC stimulated hematopoietic precursor's proliferation and granulopoietic regeneration. Then, in a second time (pre)osteoblasts progressively disappeared in favour of adipocytic cells which down regulated the proliferation and granulocytic differentiation and then contributed to a return to pre-irradiation conditions
    • …
    corecore