480 research outputs found

    Technological and Organisational Readiness in the Age of Data-Driven Decision Making : A Manufacturing Perspective

    Get PDF
    This paper is concerned with the changes brought about by digital transformation, which impact society and businesses as well as individuals. These changes also influence manufacturing organisations as decision-making processes are automated and increasingly driven by data analysis. The aim of this research paper is to discuss and analyse technological and organisational readiness in manufacturing. The main areas of focus are Big Data Analytics, Artificial Intelligence in collaboration processes, and the role of the human in future manufacturing organisations

    Fast-Neutron Activation of Long-Lived Isotopes in Enriched Ge

    Full text link
    We measured the production of \nuc{57}{Co}, \nuc{54}{Mn}, \nuc{68}{Ge}, \nuc{65}{Zn}, and \nuc{60}{Co} in a sample of Ge enriched in isotope 76 due to high-energy neutron interactions. These isotopes, especially \nuc{68}{Ge}, are critical in understanding background in Ge detectors used for double-beta decay experiments. They are produced by cosmogenic-neutron interactions in the detectors while they reside on the Earth's surface. These production rates were measured at neutron energies of a few hundred MeV. We compared the measured production to that predicted by cross-section calculations based on CEM03.02. The cross section calculations over-predict our measurements by approximately a factor of three depending on isotope. We then use the measured cosmic-ray neutron flux, our measurements, and the CEM03.02 cross sections to predict the cosmogenic production rate of these isotopes. The uncertainty in extrapolating the cross section model to higher energies dominates the total uncertainty in the cosmogenic production rate.Comment: Revised after feedback and further work on extrapolating cross sections to higher energies in order to estimate cosmic production rates. Also a numerical error was found and fixed in the estimate of the Co-57 production rat

    X-ray and Sunyaev-Zel'dovich Effect Measurements of the Gas Mass Fraction in Galaxy Clusters

    Get PDF
    We present gas mass fractions of 38 massive galaxy clusters spanning redshifts from 0.14 to 0.89, derived from Chandra X-ray data and OVRO/BIMA interferometric Sunyaev-Zel'dovich Effect measurements. We use three models for the gas distribution: (1) an isothermal beta-model fit jointly to the X-ray data at radii beyond 100 kpc and to all of the SZE data,(2) a non-isothermal double beta-model fit jointly to all of the X-ray and SZE data, and (3) an isothermal beta-model fit only to the SZE spatial data. We show that the simple isothermal model well characterizes the intracluster medium (ICM) outside of the cluster core in clusters with a wide range of morphological properties. The X-ray and SZE determinations of mean gas mass fractions for the 100 kpc-cut isothermal beta-model are fgas(X-ray)=0.110 +0.003-0.003 +0.006-0.018 and fgas(SZE)=0.116 +0.005-0.005 +0.009-0.026, where uncertainties are statistical followed by systematic at 68% confidence. For the non-isothermal double beta-model, fgas(X-ray)=0.119 +0.003-0.003 +0.007-0.014 and fgas(SZE)=0.121 +0.005-0.005 +0.009-0.016. For the SZE-only model, fgas(SZE)=0.120 +0.009-0.009 +0.009-0.027. Our results indicate that the ratio of the gas mass fraction within r2500 to the cosmic baryon fraction is 0.68 +0.10-0.16 where the range includes statistical and systematic uncertainties. By assuming that cluster gas mass fractions are independent of redshift, we find that the results are in agreement with standard LambdaCDM cosmology and are inconsistent with a flat matter dominated universe.Comment: ApJ, submitted. 47 pages, 5 figures, 8 table

    A biased-randomized simheuristic for a hybrid flow shop with stochastic processing times in the semiconductor industry

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksCompared to other industries, production systems in semiconductor manufacturing have an above-average level of complexity. Developments in recent decades document increasing product diversity, smaller batch sizes, and a rapidly changing product range. At the same time, the interconnections between equipment groups increase due to rising automation, thus making production planning and control more difficult. This paper discusses a hybrid flow shop problem with realistic constraints, such as stochastic processing times and priority constraints. The primary goal of this paper is to find a solution set (permutation of jobs) that minimizes the production makespan. The proposed algorithm extends our previous work by combining biased-randomization techniques with a discrete-event simulation heuristic. This simulation-optimization approach allows us to efficiently model dependencies caused by batching and by the existence of different flow paths. As shown in a series of numerical experiments, our methodology can achieve promising results even when stochastic processing times are considered.Peer ReviewedPostprint (author's final draft

    Project 8 Phase III Design Concept

    Get PDF
    We present a working concept for Phase III of the Project 8 experiment, aiming to achieve a neutrino mass sensitivity of 2 eV2~\mathrm{eV} (90 %90~\% C.L.) using a large volume of molecular tritium and a phased antenna array. The detection system is discussed in detail.Comment: 3 pages, 3 figures, Proceedings of Neutrino 2016, XXVII International Conference on Neutrino Physics and Astrophysics, 4-9 July 2016, London, U

    Results from the Project 8 phase-1 cyclotron radiation emission spectroscopy detector

    Get PDF
    The Project 8 collaboration seeks to measure the absolute neutrino mass scale by means of precision spectroscopy of the beta decay of tritium. Our technique, cyclotron radiation emission spectroscopy, measures the frequency of the radiation emitted by electrons produced by decays in an ambient magnetic field. Because the cyclotron frequency is inversely proportional to the electron's Lorentz factor, this is also a measurement of the electron's energy. In order to demonstrate the viability of this technique, we have assembled and successfully operated a prototype system, which uses a rectangular waveguide to collect the cyclotron radiation from internal conversion electrons emitted from a gaseous 83m^{83m}Kr source. Here we present the main design aspects of the first phase prototype, which was operated during parts of 2014 and 2015. We will also discuss the procedures used to analyze these data, along with the features which have been observed and the performance achieved to date.Comment: 3 pages; 2 figures; Proceedings of Neutrino 2016, XXVII International Conference on Neutrino Physics and Astrophysics, 4-9 July 2016, London, U

    Chandra Cluster Cosmology Project II: Samples and X-ray Data Reduction

    Full text link
    We discuss the measurements of the galaxy cluster mass functions at z=~0.05 and z=~0.5 using high-quality Chandra observations of samples derived from the ROSAT PSPC All-Sky and 400deg^2 surveys. We provide a full reference for the data analysis procedures, present updated calibration of relations between the total cluster mass and its X-ray indicators (T_X, Mgas, and Y_X) based on a subsample of low-z relaxed clusters, and present a first measurement of the evolving L_X-Mtot relation (with Mtot estimated from Y_X) obtained from a well-defined statistically complete cluster sample and with appropriate corrections for the Malmquist bias applied. Finally, we present the derived cluster mass functions, estimate the systematic uncertainties in this measurement, and discuss the calculation of the likelihood function. We confidently measure the evolution in the cluster comoving number density at a fixed mass threshold, e.g., by a factor of 5.0 +- 1.2 at M_500=2.5e14 h^-1 Msun between z=0 and 0.5. This evolution reflects the growth of density perturbations and can be used for the cosmological constraints complementing those from the distance-redshift relation.Comment: ApJ in press (Feb 10, 2009 issue); replacement to match accepted version, includes revisions in response to referee's and community comment
    corecore