1,153 research outputs found

    Egg-laying substrate selection for optimal camouflage by quail

    Get PDF
    Camouflage is conferred by background matching and disruption, which are both affected by microhabitat [1]. However, microhabitat selection that enhances camouflage has only been demonstrated in species with discrete phenotypic morphs [2 and 3]. For most animals, phenotypic variation is continuous [4 and 5]; here we explore whether such individuals can select microhabitats to best exploit camouflage. We use substrate selection in a ground-nesting bird (Japanese quail, Coturnix japonica). For such species, threat from visual predators is high [6] and egg appearance shows strong between-female variation [7]. In quail, variation in appearance is particularly obvious in the amount of dark maculation on the light-colored shell [8]. When given a choice, birds consistently selected laying substrates that made visual detection of their egg outline most challenging. However, the strategy for maximizing camouflage varied with the degree of egg maculation. Females laying heavily maculated eggs selected the substrate that more closely matched egg maculation color properties, leading to camouflage through disruptive coloration. For lightly maculated eggs, females chose a substrate that best matched their egg background coloration, suggesting background matching. Our results show that quail “know” their individual egg patterning and seek out a nest position that provides most effective camouflage for their individual phenotyp

    Late Holocene landscape change history related to the Alpine Fault determined from drowned forests in Lake Poerua, Westland, New Zealand

    Get PDF
    Abstract. Lake Poerua is a small, shallow lake that abuts the scarp of the Alpine Fault on the West Coast of New Zealand's South Island. Radiocarbon dates from drowned podocarp trees on the lake floor, a sediment core from a rangefront alluvial fan, and living tree ring ages have been used to deduce the late Holocene history of the lake. Remnant drowned stumps of kahikatea (Dacrycarpus dacrydioides) at 1.7–1.9 m water depth yield a preferred time-of-death age at 1766–1807 AD, while a dryland podocarp and kahikatea stumps at 2.4–2.6 m yield preferred time-of-death ages of ca. 1459–1626 AD. These age ranges are matched to, but offset from, the timings of Alpine Fault rupture events at ca. 1717 AD, and either ca. 1615 or 1430 AD. Alluvial fan detritus dated from a core into the toe of a rangefront alluvial fan, at an equivalent depth to the maximum depth of the modern lake (6.7 m), yields a calibrated age of AD 1223–1413. This age is similar to the timing of an earlier Alpine Fault rupture event at ca. 1230 AD ± 50 yr. Kahikatea trees growing on rangefront fans give ages of up to 270 yr, which is consistent with alluvial fan aggradation following the 1717 AD earthquake. The elevation levels of the lake and fan imply a causal and chronological link between lake-level rise and Alpine Fault rupture. The results of this study suggest that the growth of large, coalescing alluvial fans (Dry and Evans Creek fans) originating from landslides within the rangefront of the Alpine Fault and the rise in the level of Lake Poerua may occur within a decade or so of large Alpine Fault earthquakes that rupture adjacent to this area. These rises have in turn drowned lowland forests that fringed the lake. Radiocarbon chronologies built using OxCal show that a series of massive landscape changes beginning with fault rupture, followed by landsliding, fan sedimentation and lake expansion. However, drowned Kahikatea trees may be poor candidates for intimately dating these events, as they may be able to tolerate water for several decades after metre-scale lake level rises have occurred

    The impact of monetary incentives on general fertility rates in Western Australia

    Get PDF
    Background: There has been widespread international concern about declining fertility rates and the long-term negative consequences particularly for industrialised countries with ageing populations. In an attempt to boost fertility rates, the Australian Government introduced a maternity payment known as the Baby Bonus. However, major concerns have been raised that such monetary incentives would attract teenagers and socially disadvantaged groups. Methods: Population-level data and generalised linear models were used to examine general fertility rates between 1995 and 2006 by socioeconomic group, maternal age group, Aboriginality and location in Western Australia prior to and following the introduction of the Baby Bonus in July 2004.Results: After a steady decline in general fertility rates between 1995 and 2004, rates increased significantly from 52.2 births per 1000 women, aged between 15 and 49 years, in 2004 to 58.6 births per 1000 women in 2006. While there was an overall increase in general fertility rates after adjusting for maternal socio-demographic characteristics, there were no significant differences among maternal age groups (p=0.98), between Aboriginal and non-Aboriginal women(p=0.80), maternal residential locations (p=0.98) or socioeconomic groups (p=0.68). The greatest increase in births were among women residing in the highest socioeconomic areas who had the lowest general fertility rate in 2004 (21.5 births per 1000 women) but the highest in 2006 (38.1 births per 1000 women). Conclusions: Findings suggest that for countries with similar social, economic and political climates to Australia, a monetary incentive may provide a satisfactory solution to declining general fertility rates

    Neutron reflection from the liquid helium surface.

    Get PDF
    The reflection of neutrons from a helium surface has been observed for the first time. The 4He surface is smoother in the superfluid state at 1.54 K than in the case of the normal liquid at 2.3 K. In the superfluid state we also observe a surface layer ~200 Å thick which has a subtly different neutron scattering cross-section, which may be explained by an enhanced Bose-Einstein condensate fraction close to the helium surface. The application of neutron reflectometry described in this paper creates new and exciting opportunities for the surface and interfacial study of quantum fluids

    Expression and functional analysis of TaASY1 during meiosis of bread wheat (Triticum aestivum)

    Get PDF
    Background: Pairing and synapsis of homologous chromosomes is required for normal chromosome segregation and the exchange of genetic material via recombination during meiosis. Synapsis is complete at pachytene following the formation of a tri-partite proteinaceous structure known as the synaptonemal complex (SC). In yeast, HOP1 is essential for formation of the SC, and localises along chromosome axes during prophase I. Homologues in Arabidopsis (AtASY1), Brassica (BoASY1) and rice (OsPAIR2) have been isolated through analysis of mutants that display decreased fertility due to severely reduced synapsis of homologous chromosomes. Analysis of these genes has indicated that they play a similar role to HOP1 in pairing and formation of the SC through localisation to axial/lateral elements of the SC. Results: The full length wheat cDNA and genomic clone, TaASY1, has been isolated, sequenced and characterised. TaASY1 is located on chromosome Group 5 and the open reading frame displays significant nucleotide sequence identity to OsPAIR2 (84%) and AtASY1 (63%). Transcript and protein analysis showed that expression is largely restricted to meiotic tissue, with elevated levels during the stages of prophase I when pairing and synapsis of homologous chromosomes occur. Immunolocalisation using transmission electron microscopy showed TaASY1 interacts with chromatin that is associated with both axial elements before SC formation as well as lateral elements of formed SCs. Conclusion: TaASY1 is a homologue of ScHOP1, AtASY1 and OsPAIR2 and is the first gene to be isolated from bread wheat that is involved in pairing and synapsis of homologous chromosomes.Scott A Boden, Nadim Shadiac, Elise J Tucker, Peter Langridge and Jason A Abl

    TaMSH7: A cereal mismatch repair gene that affects fertility in transgenic barley (Hordeum vulgare L.)

    Get PDF
    Background: Chromosome pairing, recombination and DNA repair are essential processes during meiosis in sexually reproducing organisms. Investigating the bread wheat (Triticum aestivum L.) Ph2 (Pairing homoeologous) locus has identified numerous candidate genes that may have a role in controlling such processes, including TaMSH7, a plant specific member of the DNA mismatch repair family. Results: Sequencing of the three MSH7 genes, located on the short arms of wheat chromosomes 3A, 3B and 3D, has revealed no significant sequence divergence at the amino acid level suggesting conservation of function across the homoeogroups. Functional analysis of MSH7 through the use of RNAi loss-of-function transgenics was undertaken in diploid barley (Hordeum vulgare L.). Quantitative real-time PCR revealed several T0 lines with reduced MSH7 expression. Positive segregants from two T1 lines studied in detail showed reduced MSH7 expression when compared to transformed controls and null segregants. Expression of MSH6, another member of the mismatch repair family which is most closely related to the MSH7 gene, was not significantly reduced in these lines. In both T1 lines, reduced seed set in positive segregants was observed. Conclusion: Results presented here indicate, for the first time, a distinct functional role for MSH7 in vivo and show that expression of this gene is necessary for wild-type levels of fertility. These observations suggest that MSH7 has an important function during meiosis and as such remains a candidate for Ph2.Andrew H Lloyd, Andrew S Milligan, Peter Langridge, and Jason A Abl
    corecore