39 research outputs found

    Congenital myasthenic syndrome caused by a frameshift insertion mutation in

    Get PDF
    Objective: Description of a new variant of the glutamine-fructose-6-phosphate transaminase 1 (GFPT1) gene causing congenital myasthenic syndrome (CMS) in 3 children from 2 unrelated families. Methods: Muscle biopsies, EMG, and whole-exome sequencing were performed. Results: All 3 patients presented with congenital hypotonia, muscle weakness, respiratory insufficiency, head lag, areflexia, and gastrointestinal dysfunction. Genetic analysis identified a homozygous frameshift insertion in the GFPT1 gene (NM_001244710.1: c.686dupC; p.Arg230Ter) that was shared by all 3 patients. In one of the patients, inheritance of the variant was through uniparental disomy (UPD) with maternal origin. Repetitive nerve stimulation and single-fiber EMG was consistent with the clinical diagnosis of CMS with a postjunctional defect. Ultrastructural evaluation of the muscle biopsy from one of the patients showed extremely attenuated postsynaptic folds at neuromuscular junctions and extensive autophagic vacuolar pathology. Conclusions: These results expand on the spectrum of known loss-of-function GFPT1 mutations in CMS12 and in one family demonstrate a novel mode of inheritance due to UPD

    Biallelic VARS variants cause developmental encephalopathy with microcephaly that is recapitulated in vars knockout zebrafish

    Get PDF
    Aminoacyl tRNA synthetases (ARSs) link specific amino acids with their cognate transfer RNAs in a critical early step of protein translation. Mutations in ARSs have emerged as a cause of recessive, often complex neurological disease traits. Here we report an allelic series consisting of seven novel and two previously reported biallelic variants in valyl-tRNA synthetase (VARS) in ten patients with a developmental encephalopathy with microcephaly, often associated with early-onset epilepsy. In silico, in vitro, and yeast complementation assays demonstrate that the underlying pathomechanism of these mutations is most likely a loss of protein function. Zebrafish modeling accurately recapitulated some of the key neurological disease traits. These results provide both genetic and biological insights into neurodevelopmental disease and pave the way for further in-depth research on ARS related recessive disorders and precision therapies

    Genetic Differentiation among Wild Populations of Tribolium castaneum Estimated Using Microsatellite Markers

    No full text
    We report our characterization of the genetic variation within and differentiation among wild-collected populations of the red flour beetle, Tribolium castaneum, using microsatellite loci identified from its genome sequence. We find that global differentiation, estimated as the average FST across all loci and between all population pairs, is 0.180 (95% confidence intervals of 0.142 and 0.218). A majority of our pairwise population comparisons (>70%) were significant even though this species is considered an excellent colonizer by virtue of its pest status. Regional genetic variation between Tribolium populations is 2–3 times that observed in the fruit fly, Drosophila melanogaster. There was a weak positive correlation between genetic distance [FST/(1 − FST)] and geographic distance [ln(km)]; pairs of populations with the highest degree of genetic differentiation (FST > 0.29) have been shown to exhibit significant postzygotic reproductive isolation when crossed in previous studies. We discuss the possibility that local extinction and kin-structured colonization have increased the level of genetic differentiation between Tribolium populations

    The PKC-β selective inhibitor, Enzastaurin, impairs memory in middle-aged rats

    No full text
    Enzastaurin is a Protein Kinase C-beta selective inhibitor that was developed to treat cancers. Protein Kinase C-beta is an important enzyme for a variety of neuronal functions; in particular, previous rodent studies have reported deficits in spatial and fear-conditioned learning and memory with lower levels of Protein Kinase C-beta. Due to Enzastaurin's mechanism of action, the present study investigated the consequences of Enzastaurin exposure on learning and memory in 12-month-old Fischer-344 male rats. Rats were treated daily with subcutaneous injections of either vehicle or Enzastaurin, and behaviorally tested using the spatial reference memory Morris Water Maze. Rats treated with Enzastaurin exhibited decreased overnight retention and poorer performance on the latter testing day, indicating a mild, but significant, memory impairment. There were no differences during the probe trial indicating that all animals were able to spatially localize the platform to the proper quadrant by the end of testing. RNA isolated from the hippocampus was analyzed using Next Generation Sequencing (lllumina). No statistically significant transcriptional differences were noted. Our findings suggest that acute Enzastaurin treatment can impair hippocampal-based learning and memory performance, with no effects on transcription in the hippocampus. We propose that care should be taken in future clinical trials that utilize Protein Kinase C-SS inhibitors, to monitor for possible cognitive effects, future research should examine if these effects are fully reversible.NIH-NINDS [R01-NS059873]; State of Arizona DHSOpen access journal.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    De novo mutations of the ATP6V1A gene cause developmental encephalopathy with epilepsy.

    No full text
    V-type proton (H+) ATPase (v-ATPase) is a multi-subunit proton pump that regulates pH homeostasis in all eukaryotic cells; in neurons, v-ATPase plays additional and unique roles in synapse function. Through whole exome sequencing, we identified de novo heterozygous mutations (p.Pro27Arg, p.Asp100Tyr, p.Asp349Asn, p.Asp371Gly) in ATP6V1A, encoding the A subunit of v-ATPase, in four patients with developmental encephalopathy with epilepsy. Early manifestations, observed in all patients, were developmental delay and febrile seizures, evolving to encephalopathy with profound delay, hypotonic/dyskinetic quadriparesis and intractable multiple seizure types in two patients (p.Pro27Arg, p.Asp100Tyr), and to moderate delay with milder epilepsy in the other two (p.Asp349Asn, p.Asp371Gly). Modelling performed on the available prokaryotic and eukaryotic structures of v-ATPase predicted p.Pro27Arg to perturb subunit interaction, p.Asp100Tyr to cause steric hindrance and destabilize protein folding, p.Asp349Asn to affect the catalytic function and p.Asp371Gly to impair the rotation process, necessary for proton transport. We addressed the impact of p.Asp349Asn and p.Asp100Tyr mutations on ATP6V1A expression and function by analysing ATP6V1A-overexpressing HEK293T cells and patients' lymphoblasts. The p.Asp100Tyr mutant was characterized by reduced expression due to increased degradation. Conversely, no decrease in expression and clearance was observed for p.Asp349Asn. In HEK293T cells overexpressing either pathogenic or control variants, p.Asp349Asn significantly increased LysoTracker® fluorescence with no effects on EEA1 and LAMP1 expression. Conversely, p.Asp100Tyr decreased both LysoTracker® fluorescence and LAMP1 levels, leaving EEA1 expression unaffected. Both mutations decreased v-ATPase recruitment to autophagosomes, with no major impact on autophagy. Experiments performed on patients' lymphoblasts using the LysoSensor™ probe revealed lower pH of endocytic organelles for p.Asp349Asn and a reduced expression of LAMP1 with no effect on the pH for p.Asp100Tyr. These data demonstrate gain of function for p.Asp349Asn characterized by an increased proton pumping in intracellular organelles, and loss of function for p.Asp100Tyr with decreased expression of ATP6V1A and reduced levels of lysosomal markers. We expressed p.Asp349Asn and p.Asp100Tyr in rat hippocampal neurons and confirmed significant and opposite effects in lysosomal labelling. However, both mutations caused a similar defect in neurite elongation accompanied by loss of excitatory inputs, revealing that altered lysosomal homeostasis markedly affects neurite development and synaptic connectivity. This study provides evidence that de novo heterozygous ATP6V1A mutations cause a developmental encephalopathy with a pathomechanism that involves perturbations of lysosomal homeostasis and neuronal connectivity, uncovering a novel role for v-ATPase in neuronal development

    A de novo splice site mutation in CASK causes FG syndrome-4 and congenital nystagmus

    No full text
    Mutations in CASK cause X-linked intellectual disability, microcephaly with pontine and cerebellar hypoplasia, optic atrophy, nystagmus, feeding difficulties, GI hypomotility, and seizures. Here we present a patient with a de novo carboxyl-terminus splice site mutation in CASK (c.2521-2A\u3eG) and clinical features of the rare FG syndrome-4 (FGS4). We provide further characterization of genotype–phenotype correlations in CASK mutations and the presentation of nystagmus and the FGS4 phenotype. There is considerable variability in clinical phenotype among patients with a CASK mutation, even among variants predicted to have similar functionality. Our patient presented with developmental delay, nystagmus, and severe gastrointestinal and gastroesophageal complications. From a cognitive and neuropsychological perspective, language skills and IQ are within normal range, although visual-motor, motor development, behavior, and working memory were impaired. The c.2521-2A\u3eG splice mutation leads to skipping of exon 26 and a 9 base-pair deletion associated with a cryptic splice site, leading to a 28-AA and a 3-AA in-frame deletion, respectively (p.Ala841_Lys843del and p.Ala841_Glu868del). The predominant mutant transcripts contain an aberrant guanylate kinase domain and thus are predicted to degrade CASK\u27s ability to interact with important neuronal and ocular development proteins, including FRMD7. Upregulation of CASK as well as dysregulation among a number of interactors is also evident by RNA-seq. This is the second CASK mutation known to us as cause of FGS4. © 2017 Wiley Periodicals, Inc

    Characterization of X Chromosome Inactivation Using Integrated Analysis of Whole-Exome and mRNA Sequencing

    No full text
    <div><p>In females, X chromosome inactivation (XCI) is an epigenetic, gene dosage compensatory mechanism by inactivation of one copy of X in cells. Random XCI of one of the parental chromosomes results in an approximately equal proportion of cells expressing alleles from either the maternally or paternally inherited active X, and is defined by the XCI ratio. Skewed XCI ratio is suggestive of non-random inactivation, which can play an important role in X-linked genetic conditions. Current methods rely on indirect, semi-quantitative DNA methylation-based assay to estimate XCI ratio. Here we report a direct approach to estimate XCI ratio by integrated, family-trio based whole-exome and mRNA sequencing using phase-by-transmission of alleles coupled with allele-specific expression analysis. We applied this method to <i>in silico</i> data and to a clinical patient with mild cognitive impairment but no clear diagnosis or understanding molecular mechanism underlying the phenotype. Simulation showed that phased and unphased heterozygous allele expression can be used to estimate XCI ratio. Segregation analysis of the patient's exome uncovered a <i>de novo</i>, interstitial, 1.7 Mb deletion on Xp22.31 that originated on the paternally inherited X and previously been associated with heterogeneous, neurological phenotype. Phased, allelic expression data suggested an 83∜20 moderately skewed XCI that favored the expression of the maternally inherited, cytogenetically normal X and suggested that the deleterious affect of the <i>de novo</i> event on the paternal copy may be offset by skewed XCI that favors expression of the wild-type X. This study shows the utility of integrated sequencing approach in XCI ratio estimation.</p></div
    corecore