2,327 research outputs found

    Ni-impurity effects on the superconducting gap of La2x_{2-x}Srx_{x}CuO4_4 studied from the magnetic field and temperature dependence of the electronic specific heat

    Get PDF
    The magnetic field and temperature dependence of the electronic specific heat CelC_{\rm el} have been systematically investigated in La2xSrxCu1yNiyO4\rm La_{2-{\it x}}Sr_{\it x}Cu_{1-{\it y}}Ni_{\it y}O_4 (LSCNO) in order to study Ni-impurity effects on the superconducting (SC) gap. In LSCNO with xx=0.15 and yy=0.015, the value of γ\gamma (Cel/T\equiv C_{\rm el}/T) at TT=0 K, γ0\gamma_0, is enhanced under the magnetic field HH applied along the c\bm c-axis. The increment of γ0\gamma_0, Δγ0\Delta \gamma_0, follows the Volovik relation Δγ0\Delta \gamma_0=AHA\sqrt{H}, characteristic of the SC gap with line nodes, with prefactor AA similar to that of a pure sample. The Cel/TC_{\rm el}/T vs. TT curve under HH=0 shows a d-wave-like SC anomaly with an abrupt increase at TcT_{\rm c} and TT-linear dependence at TT\llTcT_{\rm c}, although the γ0\gamma_0-value in the Cel/TC_{\rm el}/T vs. TT curve increases with increasing Ni concentrations. Interestingly, as the SC part of Cel/TC_{\rm el}/T, Cel/TC_{\rm el}/T-γ0\gamma_0\equivγs\gamma_{\rm s}, decreases in LSCNO, TcT_{\rm c} is reduced in proportion to the decrease of γs\gamma_{\rm s}. These findings can be explained phenomenologically by a simple model in which Ni impurities bring about strong pair breaking at the edges of the coherent nodal part of the Fermi surface but in the vicinity of the nodes of the SC gap. The reduction of the SC condensation energy U0U_0 in LSCNO, evaluated from CelC_{\rm el} at TT {0.3em}\raisebox{0.4ex}{<<} {-0.75em}\raisebox{-.7ex}{\sim} {0.3em}TcT_{\rm c}, is also understood by the same model.Comment: 7 pages, 6 figures, accepted in Phys. Rev.

    Differences in bird communities on the forest edge and in the forest interior: Are there forest-interior specialists in Japan?

    Get PDF
    Most North American bird species that are less successful in small forests than in large forests, are forest-interior specialists that winter in the tropics. These species have declined in small forests because of high rates of nest predation and brood parasitism near the forest edge. To determine whether migratory forest-interior specialists are also important components of bird communities in Japan, we surveyed bird populations on plots at the edge and in the interior of deciduous forests in Hokkaido and Kyoto. Surveys were conducted during the breeding season in forest fragments using the point count method. We calculated edge indices for the most abundant species in Hokkaido and Kyoto (38 and 18 species, respectively). Among the nine species that were more abundant in interior than in edge plots in Hokkaido were the following tropical migrants: Turdus cardis, Phylloscopus coronatus, and Cuculus saturatus. In Kyoto, the abundance of particular species of tropical migrants was too low to permit statistical analysis. We therefore analyzed the rare species as a group and this group was more abundant in the forest interior than on the forest edge. Three resident species, Garrulus glandrius, Picus awokera, and Bambusicola thoracica, were also more abundant in the forest interior. The most frequent potential nest predator, Corvus macrorhynchos, was more abundant at the edge than in the interior in Hokkaido, but showed the reverse pattern in Kyoto. The abundance of the most frequent brood parasite in Hokkaido, Cuculus saturatus, had a weak positive relation with the abundance of its host species, but was not significantly related to the distance from the forest edge. Therefore, the major negative edge effects in Japan may be due to nest predation by corvids. The impact of negative edge effects, as well as the effect of forest structure, on forest-interior birds in Japan should be the focus of future research

    Dynamics of Rotating Accretion Flows Irradiated by a Quasar

    Full text link
    We study the axisymmetric, time-dependent hydrodynamics of rotating flows that are under the influence of supermassive black hole gravity and radiation from an accretion disk surrounding the black hole. This work is an extension of the earlier work presented by Proga, where nonrotating flows were studied. Here, we consider effects of rotation, a position-dependent radiation temperature, density at large radii, and uniform X-ray background radiation. As in the non-rotating case, the rotating flow settles into a configuration with two components (1) an equatorial inflow and (2) a bipolar inflow/outflow with the outflow leaving the system along the pole. However, with rotation the flow does not always reach a steady state. In addition, rotation reduces the outflow collimation and the outward flux of mass and kinetic energy. Moreover rotation increases the outward flux of the thermal energy and can lead to fragmentation and time-variability of the outflow. We also show that a position-dependent radiation temperature can significantly change the flow solution. In particular, the inflow in the equatorial region can be replaced by a thermally driven outflow. Generally, as it have been discussed and shown in the past, we find that self-consistently determined preheating/cooling from the quasar radiation can significantly reduce the rate at which the central BH is fed with matter. However, our results emphasize also a little appreciated feature. Namely, quasar radiation drives a non-spherical, multi-temperature and very dynamic flow. These effects become dominant for luminosities in excess of 0.01 of the Eddington luminosity.Comment: accepted for publication in Ap

    MHD Simulations of Magnetospheric Accretion, Ejection and Plasma-field Interaction

    Full text link
    We review recent axisymmetric and three-dimensional (3D) magnetohydrodynamic (MHD) numerical simulations of magnetospheric accretion, plasma-field interaction and outflows from the disk-magnetosphere boundary.Comment: 11 pages, 8 figures, conference proceedings: "Physics at the Magnetospheric Boundary", Geneva, Switzerland, 25-28 June, 201

    Accretion dynamics in the classical T Tauri star V2129 Oph

    Full text link
    We analyze the photometric and spectroscopic variability of the classical T Tauri star V2129 Oph over several rotational cycles to test the dynamical predictions of magnetospheric accretion models. The photometric variability and the radial velocity variations in the photospheric lines can be explained by rotational modulation due to cold spots, while the radial velocity variations of the He I (5876 \AA) line and the veiling variability are due to hot spot rotational modulation. The hot and cold spots are located at high latitudes and about the same phase, but the hot spot is expected to sit at the chromospheric level, while the cold spot is at the photospheric level. Using the dipole+octupole magnetic-field configuration previously proposed in the literature for the system, we compute 3D MHD magnetospheric simulations of the star-disk system. We use the simulation's density, velocity and scaled temperature structures as input to a radiative transfer code, from which we calculate theoretical line profiles at all rotational phases. The theoretical profiles tend to be narrower than the observed ones, but the qualitative behavior and the observed rotational modulation of the H\alpha and H\beta emission lines are well reproduced by the theoretical profiles. The spectroscopic and photometric variability observed in V2129 Oph support the general predictions of complex magnetospheric accretion models with non-axisymmetric, multipolar fields.Comment: Accepted by Astronomy and Astrophysic

    Modelling circumstellar discs with 3D radiation hydrodynamics

    Full text link
    We present results from combining a grid-based radiative transfer code with a Smoothed Particle Hydrodynamics code to produce a flexible system for modelling radiation hydrodynamics. We use a benchmark model of a circumstellar disc to determine a robust method for constructing a gridded density distribution from SPH particles. The benchmark disc is then used to determine the accuracy of the radiative transfer results. We find that the SED and the temperature distribution within the disc are sensitive to the representation of the disc inner edge, which depends critically on both the grid and SPH resolution. The code is then used to model a circumstellar disc around a T-Tauri star. As the disc adjusts towards equilibrium vertical motions in the disc are induced resulting in scale height enhancements which intercept radiation from the central star. Vertical transport of radiation enables these perturbations to influence the mid-plane temperature of the disc. The vertical motions decay over time and the disc ultimately reaches a state of simultaneous hydrostatic and radiative equilibrium.Comment: MNRAS accepted; 15 pages; 17 figures, 4 in colou

    Facing the wind of the pre-FUor V1331 Cyg

    Full text link
    The mass outflows in T Tauri stars (TTS) are thought to be an effective mechanism to remove angular momentum during the pre-main-sequence contraction of a low-mass star. The most powerful winds are observed at the FUor stage of stellar evolution. V1331 Cyg has been considered as a TTS at the pre-FUor stage. We analyse high-resolution spectra of V1331 Cyg collected in 1998-2007 and 20-d series of spectra taken in 2012. For the first time the photospheric spectrum of the star is detected and stellar parameters are derived: spectral type G7-K0 IV, mass 2.8 Msun, radius 5 Rsun, vsini < 6 km/s. The photospheric spectrum is highly veiled, but the amount of veiling is not the same in different spectral lines, being lower in weak transitions and much higher in strong transitions. The Fe II 5018, Mg I 5183, K I 7699 and some other lines of metals are accompanied by a `shell' absorption at radial velocity of about -240 km/s. We show that these absorptions form in the post-shock gas in the jet, i.e. the star is seen though its jet. The P Cyg profiles of H-alpha and H-beta indicate the terminal wind velocity of about 500 km/s, which vary on time-scales from several days to years. A model of the stellar wind is developed to interpret the observations. The model is based on calculation of hydrogen spectral lines using the radiative transfer code TORUS. The observed H-alpha and H-beta line profiles and their variability can be well reproduced with a stellar wind model, where the mass-loss rate and collimation (opening angle) of the wind are variable. The changes of the opening angle may be induced by small variability in magetization of the inner disc wind. The mass-loss rate is found to vary within (6-11)x10^{-8} Msun/yr, with the accretion rate of 2.0x10^{-6} Msun/yr.Comment: 11 pages, 12 figures; accepted for publication in MNRAS. Typographical errors have been corrected after the proof stag
    corecore