51 research outputs found

    Population status, feeding ecology and activity pattern of helmeted guinea fowl (Numidia meleagris) in Abijata-Shalla Lakes National Park

    Get PDF
    This study documents the population status, feeding ecology and activity pattern of helmeted guinea fowl (Numida meleagris) in Abijata-Shalla Lakes National Park. Data were collected in 2011 during the dry and wet seasons. Direct observation including focal observation and scan sampling methods were used to collect data to study the feeding ecology and activity patterns. Total count method was used to study the population status. Data were analyzed using descriptive statistics, and results compared with Chi-square test and one way ANOVA. The mean number of helmeted guinea fowl in the study area was 225 during the dry season and 208 during the wet season. Helmeted guinea fowls were omnivores during both seasons. The species prefers insects during wet season (71.6%) and largely consumes nodes and seeds of grasses during the dry season (75.2%). Feeding was the most important diurnal activity, followed by scanning, flying, resting and preening. There was a strong relationship between time allocated to each activity and time of the day. Group size ranged from 2 to 21 individuals. These birds were affected primarily by the loss of foraging and nesting habitat and by human disturbance. Different conservation measures should be taken to enhance the number of helmeted guinea fowl by creating suitable habitat.Key words: Diurnal activity pattern, foraging ecology, helmeted guinea fowl, population

    Estimates of Dietary Mineral Micronutrient Supply from Staple Cereals in Ethiopia at a District Level

    Get PDF
    Recent surveys have revealed substantial spatial variation in the micronutrient composition of cereals in Ethiopia, where a single national micronutrient concentration values for cereal grains are of limited use for estimating typical micronutrient intakes. We estimated the district-level dietary mineral supply of staple cereals, combining district-level cereal production and crop mineral composition data, assuming cereal consumption of 300 g capita−1 day−1 proportional to district-level production quantity of each cereal. We considered Barley (Hordeum vulgare L.), maize (Zea mays L.), sorghum (Sorghum bicolor (L.) Moench), teff (Eragrostis tef (Zuccagni) Trotter), and wheat (Triticum aestivum L.) consumption representing 93.5% of the total cereal production in the three major agrarian regions. On average, grain cereals can supply 146, 23, and 7.1 mg capita−1 day−1 of Ca, Fe, and Zn, respectively. In addition, the Se supply was 25 µg capita−1 day−1. Even at district-level, cereals differ by their mineral composition, causing a wide range of variation in their contribution to the daily dietary requirements, i.e., for an adult woman: 1–48% of Ca, 34–724% of Fe, 17–191% of Se, and 48–95% of Zn. There was considerable variability in the dietary supply of Ca, Fe, Se, and Zn from staple cereals between districts in Ethiopi

    A reconnaissance survey of farmers’ awareness of hypomagnesaemic tetany in UK cattle and sheep farms

    Get PDF
    Hypomagnesaemic tetany (HypoMgT) in ruminants is a physiological disorder caused by inadequate intake or impaired absorption of magnesium (Mg) in the gut. If it is not detected and treated in time, HypoMgT can cause the death of the affected animal. A semi-structured questionnaire survey was conducted from July 2016–2017 to assess farmers’ awareness of HypoMgT in cattle and sheep in the UK. The questionnaire was distributed to farmers at farm business events and agricultural shows, and through a collaborative group of independent veterinary practices to their clients. Farmers were asked about (i) the incidence of presumed HypoMgT (PHT); (ii) their strategies to treat or prevent HypoMgT; (iii) mineral tests on animals, forage and soil, and (iv) farm enterprise type. A total of 285 responses were received from 82 cattle, 157 mixed cattle and sheep, and 46 sheep farmers, of whom 39% reported HypoMgT in their livestock, affecting 1–30 animals. Treatment and/or prevention against HypoMgT was reported by 96% respondents with PHT and 79% of those without. Mineral tests on animal, forage, and soil was conducted by 24%, 53%, and 66% of the respondents, respectively, regardless of PHT. There was a highly significant association between the use of interventions to tackle HypoMgT and the incidence of PHT (p < 0.01). The top three treatment/prevention strategies used were reported as being free access supplementation (149), in feed supplementation (59) and direct to animal treatments (drenches, boluses and injections) (45) although these did vary by farm type. Although some (9) reported using Mg-lime, no other pasture management interventions were reported (e.g., Mg-fertilisation or sward composition). Generally, the results indicate that UK farmers are aware of the risks of HypoMgT. A more integrated soil-forage-animal assessment may improve the effectiveness of tackling HypoMgT and help highlight the root causes of the problem

    A reconnaissance survey of farmers’ awareness of hypomagnesaemic tetany in UK cattle and sheep farms

    Get PDF
    Hypomagnesaemic tetany (HypoMgT) in ruminants is a physiological disorder caused by inadequate intake or impaired absorption of magnesium (Mg) in the gut. If it is not detected and treated in time, HypoMgT can cause the death of the affected animal. A semi-structured questionnaire survey was conducted from July 2016-2017 to assess farmers' awareness of HypoMgT in cattle and sheep in the UK. The questionnaire was distributed to farmers at farm business events and agricultural shows, and through a collaborative group of independent veterinary practices to their clients. Farmers were asked about (i) the incidence of presumed HypoMgT (PHT); (ii) their strategies to treat or prevent HypoMgT; (iii) mineral tests on animals, forage and soil, and (iv) farm enterprise type. A total of 285 responses were received from 82 cattle, 157 mixed cattle and sheep, and 46 sheep farmers, of whom 39% reported HypoMgT in their livestock, affecting 1-30 animals. Treatment and/or prevention against HypoMgT was reported by 96% respondents with PHT and 79% of those without. Mineral tests on animal, forage, and soil was conducted by 24%, 53%, and 66% of the respondents, respectively, regardless of PHT. There was a highly significant association between the use of interventions to tackle HypoMgT and the incidence of PHT (p < 0.01). The top three treatment/prevention strategies used were reported as being free access supplementation (149), in feed supplementation (59) and direct to animal treatments (drenches, boluses and injections) (45) although these did vary by farm type. Although some (9) reported using Mg-lime, no other pasture management interventions were reported (e.g., Mg-fertilisation or sward composition). Generally, the results indicate that UK farmers are aware of the risks of HypoMgT. A more integrated soil-forage-animal assessment may improve the effectiveness of tackling HypoMgT and help highlight the root causes of the problem

    A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies

    Get PDF
    Scenarios that limit global warming to 1.5 °C describe major transformations in energy supply and ever-rising energy demand. Here, we provide a contrasting perspective by developing a narrative of future change based on observable trends that results in low energy demand. We describe and quantify changes in activity levels and energy intensity in the global North and global South for all major energy services. We project that global final energy demand by 2050 reduces to 245 EJ, around 40% lower than today, despite rises in population, income and activity. Using an integrated assessment modelling framework, we show how changes in the quantity and type of energy services drive structural change in intermediate and upstream supply sectors (energy and land use). Down-sizing the global energy system dramatically improves the feasibility of a low-carbon supply-side transformation. Our scenario meets the 1.5 °C climate target as well as many sustainable development goals, without relying on negative emission technologies

    The risk of selenium deficiency in Malawi is large and varies over multiple spatial scales

    Get PDF
    Selenium (Se) is an essential human micronutrient. Deficiency of Se decreases the activity of selenoproteins and can compromise immune and thyroid function and cognitive development, and increase risks from non-communicable diseases. The prevalence of Se deficiency is unknown in many countries, especially in sub-Saharan Africa (SSA). Here we report that the risk of Se deficiency in Malawi is large among a nationally representative population of 2,761 people. For example, 62.5% and 29.6% of women of reproductive age (WRA, n = 802) had plasma Se concentrations below the thresholds for the optimal activity of the selenoproteins glutathione peroxidase 3 (GPx3; <86.9 ng mL−1) and iodothyronine deiodinase (IDI; <64.8 ng mL−1), respectively. This is the first nationally representative evidence of widespread Se deficiency in SSA. Geostatistical modelling shows that Se deficiency risks are influenced by soil type, and also by proximity to Lake Malawi where more fish is likely to be consumed. Selenium deficiency should be quantified more widely in existing national micronutrient surveillance programmes in SSA given the marginal additional cost this would incur

    The risk of selenium deficiency in Malawi is large and varies over multiple spatial scales

    Get PDF
    Selenium (Se) is an essential human micronutrient. Deficiency of Se decreases the activity of selenoproteins and can compromise immune and thyroid function and cognitive development, and increase risks from non-communicable diseases. The prevalence of Se deficiency is unknown in many countries, especially in sub-Saharan Africa (SSA). Here we report that the risk of Se deficiency in Malawi is large among a nationally representative population of 2,761 people. For example, 62.5% and 29.6% of women of reproductive age (WRA, n = 802) had plasma Se concentrations below the thresholds for the optimal activity of the selenoproteins glutathione peroxidase 3 (GPx3

    The nutritional quality of cereals varies geospatially in Ethiopia and Malawi

    Get PDF
    Micronutrient deficiencies (MNDs) remain widespread among people in sub-Saharan Africa1,2,3,4,5, where access to sufficient food from plant and animal sources that is rich in micronutrients (vitamins and minerals) is limited due to socioeconomic and geographical reasons4,5,6. Here we report the micronutrient composition (calcium, iron, selenium and zinc) of staple cereal grains for most of the cereal production areas in Ethiopia and Malawi. We show that there is geospatial variation in the composition of micronutrients that is nutritionally important at subnational scales. Soil and environmental covariates of grain micronutrient concentrations included soil pH, soil organic matter, temperature, rainfall and topography, which were specific to micronutrient and crop type. For rural households consuming locally sourced food—including many smallholder farming communities—the location of residence can be the largest influencing factor in determining the dietary intake of micronutrients from cereals. Positive relationships between the concentration of selenium in grain and biomarkers of selenium dietary status occur in both countries. Surveillance of MNDs on the basis of biomarkers of status and dietary intakes from national- and regional-scale food-composition data1,2,3,4,5,6,7 could be improved using subnational data on the composition of grain micronutrients. Beyond dietary diversification, interventions to alleviate MNDs, such as food fortification8,9 and biofortification to increase the micronutrient concentrations in crops10,11, should account for geographical effects that can be larger in magnitude than intervention outcomes

    Soil and landscape factors influence geospatial variation in maize grain zinc concentration in Malawi

    Get PDF
    Dietary zinc (Zn) deficiency is widespread globally, and in particular among people in sub-Saharan Africa (SSA). In Malawi, dietary sources of Zn are dominated by maize and spatially dependent variation in grain Zn concentration, which will affect dietary Zn intake, has been reported at distances of up to ~ 100 km. The aim of this study was to identify potential soil properties and environmental covariates which might explain this longer-range spatial variation in maize grain Zn concentration. Data for maize grain Zn concentrations, soil properties, and environmental covariates were obtained from a spatially representative survey in Malawi (n = 1600 locations). Labile and non-labile soil Zn forms were determined using isotopic dilution methods, alongside conventional agronomic soil analyses. Soil properties and environmental covariates as potential predictors of the concentration of Zn in maize grain were tested using a priori expert rankings and false discovery rate (FDR) controls within the linear mixed model (LMM) framework that informed the original survey design. Mean and median grain Zn concentrations were 21.8 and 21.5 mg kg−1, respectively (standard deviation 4.5; range 10.0–48.1). A LMM for grain Zn concentration was constructed for which the independent variables: soil pH(water), isotopically exchangeable Zn (ZnE), and diethylenetriaminepentaacetic acid (DTPA) extractable Zn (ZnDTPA) had predictive value (p < 0.01 in all cases, with FDR controlled at < 0.05). Downscaled mean annual temperature also explained a proportion of the spatial variation in grain Zn concentration. Evidence for spatially dependent variation in maize grain Zn concentrations in Malawi is robust within the LMM framework used in this study, at distances of up to ~ 100 km. Spatial predictions from this LMM provide a basis for further investigation of variations in the contribution of staple foods to Zn nutrition, and where interventions to increase dietary Zn intake (e.g. biofortification) might be most effective. Other soil and landscape factors influencing spatially dependent variation in maize grain Zn concentration, along with factors operating over shorter distances such as choice of crop variety and agronomic practices, require further exploration beyond the scope of the design of this survey
    corecore