989 research outputs found
The spring and autumn phenophases of the broadleaves trees indicate the extension of growing season in the boreal forest environment. Abstract.
Relaxation oscillations and negative strain rate sensitivity in the Portevin - Le Chatelier effect
A characteristic feature of the Portevin - Le Chatelier effect or the jerky
flow is the stick-slip nature of stress-strain curves which is believed to
result from the negative strain rate dependence of the flow stress. The latter
is assumed to result from the competition of a few relevant time scales
controlling the dynamics of jerky flow. We address the issue of time scales and
its connection to the negative strain rate sensitivity of the flow stress
within the framework of a model for the jerky flow which is known to reproduce
several experimentally observed features including the negative strain rate
sensitivity of the flow stress. We attempt to understand the above issues by
analyzing the geometry of the slow manifold underlying the relaxational
oscillations in the model. We show that the nature of the relaxational
oscillations is a result of the atypical bent geometry of the slow manifold.
The analysis of the slow manifold structure helps us to understand the time
scales operating in different regions of the slow manifold. Using this
information we are able to establish connection with the strain rate
sensitivity of the flow stress. The analysis also helps us to provide a proper
dynamical interpretation for the negative branch of the strain rate
sensitivity.Comment: 7 figures, To appear in Phys. Rev.
The Portevin-Le Chatelier effect in the Continuous Time Random Walk framework
We present a continuous time random walk model for the Portevin-Le Chatelier
(PLC) effect. From our result it is shown that the dynamics of the PLC band can
be explained in terms of the Levy Walk
The influence of spectral solar irradiance data on stratospheric heating rates during the 11 year solar cycle
Heating rate calculations with the FUBRad shortwave (SW) radiation parameterization have been performed to examine the effect of prescribed spectral solar fluxes from the NRLSSI, MPS and IUP data sets on SW heating rates over the 11 year solar cycle 22. The corresponding temperature response is derived from perpetual January General Circulation Model (GCM) simulations with prescribed ozone concentrations. The different solar flux input data sets induce clear differences in SW heating rates at solar minimum, with the established NRLSSI data set showing the smallest solar heating rates. The stronger SW heating in the middle and upper stratosphere in the MPS data warms the summer upper stratosphere by 2 K. Over the solar cycle, SW heating rate differences vary up to 40% between the irradiance data sets, but do not result in a significant change of the solar temperature signal. Lower solar fluxes in the newer SIM data lead to a significantly cooler stratosphere and mesosphere when compared to NRLSSI data for 2007. Changes in SW heating from 2004 to 2007 are however up to six times stronger than for the NRLSSI data.
Key Points:
- Solar minimum and solar cycle differences in SW heating rates and temperature
- Comparison of three spectral solar input data sets for solar cycle 22
- Comparison of the newly compiled SORCE-data with the commonly used NRLSSI-dat
Dynamics of stick-slip in peeling of an adhesive tape
We investigate the dynamics of peeling of an adhesive tape subjected to a
constant pull speed. We derive the equations of motion for the angular speed of
the roller tape, the peel angle and the pull force used in earlier
investigations using a Lagrangian. Due to the constraint between the pull
force, peel angle and the peel force, it falls into the category of
differential-algebraic equations requiring an appropriate algorithm for its
numerical solution. Using such a scheme, we show that stick-slip jumps emerge
in a purely dynamical manner. Our detailed numerical study shows that these set
of equations exhibit rich dynamics hitherto not reported. In particular, our
analysis shows that inertia has considerable influence on the nature of the
dynamics. Following studies in the Portevin-Le Chatelier effect, we suggest a
phenomenological peel force function which includes the influence of the pull
speed. This reproduces the decreasing nature of the rupture force with the pull
speed observed in experiments. This rich dynamics is made transparent by using
a set of approximations valid in different regimes of the parameter space. The
approximate solutions capture major features of the exact numerical solutions
and also produce reasonably accurate values for the various quantities of
interest.Comment: 12 pages, 9 figures. Minor modifications as suggested by refere
High order amplitude equation for steps on creep curve
We consider a model proposed by one of the authors for a type of plastic
instability found in creep experiments which reproduces a number of
experimentally observed features. The model consists of three coupled
non-linear differential equations describing the evolution of three types of
dislocations. The transition to the instability has been shown to be via Hopf
bifurcation leading to limit cycle solutions with respect to physically
relevant drive parameters. Here we use reductive perturbative method to extract
an amplitude equation of up to seventh order to obtain an approximate analytic
expression for the order parameter. The analysis also enables us to obtain the
bifurcation (phase) diagram of the instability. We find that while
supercritical bifurcation dominates the major part of the instability region,
subcritical bifurcation gradually takes over at one end of the region. These
results are compared with the known experimental results. Approximate analytic
expressions for the limit cycles for different types of bifurcations are shown
to agree with their corresponding numerical solutions of the equations
describing the model. The analysis also shows that high order nonlinearities
are important in the problem. This approach further allows us to map the
theoretical parameters to the experimentally observed macroscopic quantities.Comment: LaTex file and eps figures; Communicated to Phys. Rev.
Chaos or Noise - Difficulties of a Distinction
In experiments, the dynamical behavior of systems is reflected in time
series. Due to the finiteness of the observational data set it is not possible
to reconstruct the invariant measure up to arbitrary fine resolution and
arbitrary high embedding dimension. These restrictions limit our ability to
distinguish between signals generated by different systems, such as regular,
chaotic or stochastic ones, when analyzed from a time series point of view. We
propose to classify the signal behavior, without referring to any specific
model, as stochastic or deterministic on a certain scale of the resolution
, according to the dependence of the -entropy,
, and of the finite size Lyapunov exponent,
, on .Comment: 24 pages RevTeX, 9 eps figures included, two references added, minor
corrections, one section has been split in two (submitted to PRE
Multifractal burst in the spatio-temporal dynamics of jerky flow
The collective behavior of dislocations in jerky flow is studied in Al-Mg
polycrystalline samples subjected to constant strain rate tests. Complementary
dynamical, statistical and multifractal analyses are carried out on the
stress-time series recorded during jerky flow to characterize the distinct
spatio-temporal dynamical regimes. It is shown that the hopping type B and the
propagating type A bands correspond to chaotic and self-organized critical
states respectively. The crossover between these types of bands is identified
by a large spread in the multifractal spectrum. These results are interpreted
on the basis of competing scales and mechanisms.Comment: 4 pages, 6 figures To be published in Phys. Rev. Lett. (2001
Fingering Instability of Dislocations and Related Defects
We identify a fundamental morphological instability of mobile dislocations in
crystals and related line defects. A positive gradient in the local driving
force along the direction of defect motion destabilizes long-wavelength
vibrational modes, producing a ``fingering'' pattern. The minimum unstable
wavelength scales as the inverse square root of the force gradient. We
demonstrate the instability's onset in simulations of a screw dislocation in Al
(via molecular dynamics) and of a vortex in a 3-d XY ``rotator'' model.Comment: 4 pages, 3 figure
Force-matched embedded-atom method potential for niobium
Large-scale simulations of plastic deformation and phase transformations in
alloys require reliable classical interatomic potentials. We construct an
embedded-atom method potential for niobium as the first step in alloy potential
development. Optimization of the potential parameters to a well-converged set
of density-functional theory (DFT) forces, energies, and stresses produces a
reliable and transferable potential for molecular dynamics simulations. The
potential accurately describes properties related to the fitting data, and also
produces excellent results for quantities outside the fitting range. Structural
and elastic properties, defect energetics, and thermal behavior compare well
with DFT results and experimental data, e.g., DFT surface energies are
reproduced with less than 4% error, generalized stacking-fault energies differ
from DFT values by less than 15%, and the melting temperature is within 2% of
the experimental value.Comment: 17 pages, 13 figures, 7 table
- …
