135 research outputs found

    High Temperature Behavior and Long-term Stability of Lithium Drifted Silicon Surface-barrier Detectors

    Get PDF
    High temperature behavior and long-term stability of lithium drifted silicon surface barrier charged particle detector

    Comparing Soil Boundaries Delineated by Digital Analysis of Multispectral Scanner Data from High and Low Spatial Resolution Systems

    Get PDF
    Aircraft and Landsat data were used with computer-aided techniques to delineate soils patterns of a field of 40 ha in a transition zone between soils developed under deciduous forest and those developed under prairie vegetation. Two computer-aided classification techniques, supervised and nonsupervised, were employed in classifying soils of the study area. The means and covariance matrix statistics were obtained for every cluster or soil class through the statistics algorithm. Each cluster of aircraft and Landsat data was identified and assigned to a specific soil type by correlating the cluster soil patterns with a standard soils map of the test site which was prepared as a part of the ground observation task. A sampling grid plan was used to select a training set for a supervised classification of the aircraft MSS data. The spectral soil patterns revealed in the classifications from aircraft and satellite MSS data resembled the general patterns of the soils of the conventionally prepared soil map. The spatial resolution of the aircraft scanner was adequate to recognize each soil type boundary in the test site. However, the limited spatial resolution of the satellite scanner made it difficult to delineate those soil features with widths less than the spatial resolution of the scanner. On the contrary those soil patterns which were broad enough to exceed the spatial resolution of the Landsat scanner were delineated very well

    Insights into congenital stationary night blindness based on the structure of G90D rhodopsin

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102109/1/embr201344.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102109/2/embr201344.reviewer_comments.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102109/3/embr201344-sup-0001.pd

    Challenges in Nigeria’s education sector and the migration of Nigerian postgraduate students to South African universities

    Get PDF
    Education remains the weapon for upward stratification, social and economic development of any nation but the Nigerian government has not shown enough commitment to the educational sector. The manifestation could be seen in the shrinking government funding on education, decaying and lack of infrastructure in Nigeria’s universities which have led to demoralization of the academia. A major consequence of this is the frustration experienced by postgraduate students who are pursuing higher education and having to spend longer period than expected record time. This frustration in pursuing higher educational qualification often leads to stunted career progression. This has led to an alternative decision to migrate in search of higher education abroad. Consequently, in recent times, Nigerian postgraduate students have migrated more than ever before to South African Universities that are believed to have modern facilities for training and ensuring completion of programmes in record time. This study employed the use of structured questionnaire to investigate the determinants of this form of migration. Among other findings, this study found that the decision to migrate and pursue postgraduate student abroad is informed by the demoralization and frustration suffered in attaining postgraduate education in Nigeria. The study also found that many Nigerian postgraduate migrant students that desired to stay back in South Africa after the programme were discouraged from doing so because of the frequent hostilities between the bulging South African youths. Their hostility is associated with the shrinking capacity of the host government (South Africa) to create new jobs for them. In addition, the belief of the agitating South African youth that the migrant postgraduates are responsible for their unemployed status, by taking up their jobs especially in those areas where required skills among the South African are lacking further gingers hostilities. This study, therefore, suggests among others that the home country should increase budgetary allocation to improve the education sector as well as monitor such allocation to ensure that it is prudently utilized. It is also recommended that institutional processes and procedures to monitor and evaluate postgraduate studies in Nigerian universities be institutionalized

    Antibiotic and Antiinflammatory Therapy Transiently Reduces Inflammation and Hypercoagulation in Acutely SIV-Infected Pigtailed Macaques

    Get PDF
    Increased chronic immune activation and inflammation are hallmarks of HIV/SIV infection and are highly correlated with progression to AIDS and development of non-AIDS comorbidities, such as hypercoagulability and cardiovascular disease. Intestinal dysfunction resulting in microbial translocation has been proposed as a lead cause of systemic immune activation and hypercoagulability in HIV/SIV infection. Our goal was to assess the biological and clinical impact of a therapeutic strategy designed to reduce microbial translocation through reduction of the microbial content of the intestine (Rifaximin-RFX) and of gut inflammation (Sulfasalazine-SFZ). RFX is an intraluminal antibiotic that was successfully used in patients with hepatic encephalopathy. SFZ is an antiinflammatory drug successfully used in patients with mild to moderate inflammatory bowel disease. Both these clinical conditions are associated with increased microbial translocation, similar to HIV-infected patients. Treatment was administered for 90 days to five acutely SIV-infected pigtailed macaques (PTMs) starting at the time of infection; seven untreated SIVsab-infected PTMs were used as controls. RFX+SFZ were also administered for 90 days to three chronically SIVsab-infected PTMs. RFX+SFZ administration during acute SIVsab infection of PTMs resulted in: significantly lower microbial translocation, lower systemic immune activation, lower viral replication, better preservation of mucosal CD4+ T cells and significantly lower levels of hypercoagulation biomarkers. This effect was clear during the first 40 days of treatment and was lost during the last stages of treatment. Administration of RFX+SFZ to chronically SIVsab–infected PTMs had no discernible effect on infection. Our data thus indicate that early RFX+SFZ administration transiently improves the natural history of acute and postacute SIV infection, but has no effect during chronic infection

    The Structure and Origin of Switchbacks: Parker Solar Probe Observations

    Full text link
    Switchbacks are rapid magnetic field reversals that last from seconds to hours. Current Parker Solar Probe (PSP) observations pose many open questions in regards to the nature of switchbacks. For example, are they stable as they propagate through the inner heliosphere, and how are they formed? In this work, we aim to investigate the structure and origin of switchbacks. In order to study the stability of switchbacks, we suppose the small scale current sheets therein may work to braid and stabilize the switchbacks. Thus, we use the partial variance of increments method to identify the small scale current sheets, and then compare their distributions in switchbacks. With more than one thousand switchbacks identified with PSP observations in seven encounters, we find many more current sheets inside than outside switchbacks, indicating that these micro-structures should work to stabilize the S-shape structures of switchbacks. Additionally, with the helium measurements, we study the variations of helium abundance ratios and alpha-proton differential speeds to trace switchbacks to their origins. We find both helium-rich and helium-poor populations in switchbacks, implying the switchbacks could originate from both closed and open magnetic field regions in the Sun. Moreover, we observe that the alpha-proton differential speeds also show complex variations as compared to the local Alfv\'en speed. The joint distributions of both parameters show that low helium abundance together with low differential speed is the dominant state in switchbacks. The presence of small scale current sheets in switchbacks along with the helium features are in line with the hypothesis that switchbacks could originate from the Sun via interchange reconnection process. However, other formation mechanisms are not excluded

    The Temperature, Electron, and Pressure Characteristics of Switchbacks: Parker Solar Probe Observations

    Full text link
    Parker Solar Probe (PSP) observes unexpectedly prevalent switchbacks, which are rapid magnetic field reversals that last from seconds to hours, in the inner heliosphere, posing new challenges to understanding their nature, origin, and evolution. In this work, we investigate the thermal states, electron pitch angle distributions, and pressure signatures of both inside and outside switchbacks, separating a switchback into spike, transition region (TR), and quiet period (QP). Based on our analysis, we find that the proton temperature anisotropies in TRs seem to show an intermediate state between spike and QP plasmas. The proton temperatures are more enhanced in spike than in TR and QP, but the alpha temperatures and alpha-to-proton temperature ratios show the opposite trends, implying that the preferential heating mechanisms of protons and alphas are competing in different regions of switchbacks. Moreover, our results suggest that the electron integrated intensities are almost the same across the switchbacks but the electron pitch angle distributions are more isotropic inside than outside switchbacks, implying switchbacks are intact structures but strong scattering of electrons happens inside switchbacks. In addition, the examination of pressures reveals that the total pressures are comparable through a switchback, confirming switchbacks are pressure-balanced structures. These characteristics could further our understanding of ion heating, electron scattering, and the structure of switchbacks.Comment: submitted to Ap

    Parker Solar Probe Observations of High Plasma Beta Solar Wind from Streamer Belt

    Full text link
    In general, slow solar wind from the streamer belt forms a high plasma beta equatorial plasma sheet around the heliospheric current sheet (HCS) crossing, namely the heliospheric plasma sheet (HPS). Current Parker Solar Probe (PSP) observations show that the HCS crossings near the Sun could be full or partial current sheet crossing (PCS), and they share some common features but also have different properties. In this work, using the PSP observations from encounters 4 to 10, we identify streamer belt solar wind from enhancements in plasma beta, and we further use electron pitch angle distributions to separate it into HPS solar wind that around the full HCS crossings and PCS solar wind that in the vicinity of PCS crossings. Based on our analysis, we find that the PCS solar wind has different characteristics as compared with HPS solar wind: a) PCS solar wind could be non-pressure-balanced structures rather than magnetic holes, and the total pressure enhancement mainly results from the less reduced magnetic pressure; b) some of the PCS solar wind are mirror unstable; c) PCS solar wind is dominated by very low helium abundance but varied alpha-proton differential speed. We suggest the PCS solar wind could originate from coronal loops deep inside the streamer belt, and it is pristine solar wind that still actively interacts with ambient solar wind, thus it is valuable for further investigations on the heating and acceleration of slow solar wind
    corecore