3,036 research outputs found

    Projections Onto Convex Sets (POCS) Based Optimization by Lifting

    Get PDF
    Two new optimization techniques based on projections onto convex space (POCS) framework for solving convex and some non-convex optimization problems are presented. The dimension of the minimization problem is lifted by one and sets corresponding to the cost function are defined. If the cost function is a convex function in R^N the corresponding set is a convex set in R^(N+1). The iterative optimization approach starts with an arbitrary initial estimate in R^(N+1) and an orthogonal projection is performed onto one of the sets in a sequential manner at each step of the optimization problem. The method provides globally optimal solutions in total-variation, filtered variation, l1, and entropic cost functions. It is also experimentally observed that cost functions based on lp, p<1 can be handled by using the supporting hyperplane concept

    Content-adaptive color transform for image compression

    Get PDF
    Cataloged from PDF version of article.In this paper, an adaptive color transform for image compression is introduced. In each block of the image, coefficients of the color transform are determined from the previously compressed neighboring blocks using weighted sums of the RGB pixel values, making the transform block-specific. There is no need to transmit or store the transform coeffi- cients because they are estimated from previous blocks. The compression efficiency of the transform is demonstrated using the JPEG image coding scheme. In general, the suggested transformation results in better peak signal-to-noise ratio (PSNR) values for a given compression level. ( C) 2011 Society of Photo-Optical Instrumentation Engineer

    3D Model compression using Connectivity-Guided Adaptive Wavelet Transform built into 2D SPIHT

    Get PDF
    Cataloged from PDF version of article.Connectivity-Guided Adaptive Wavelet Transform based mesh compression framework is proposed. The transformation uses the connectivity information of the 3D model to exploit the inter-pixel correlations. Orthographic projection is used for converting the 3D mesh into a 2D image-like representation. The proposed conversion method does not change the connectivity among the vertices of the 3D model. There is a correlation between the pixels of the composed image due to the connectivity of the 3D mesh. The proposed wavelet transform uses an adaptive predictor that exploits the connectivity information of the 3D model. Known image compression tools cannot take advantage of the correlations between the samples. The wavelet transformed data is then encoded using a zero-tree wavelet based method. Since the encoder creates a hierarchical bitstream, the proposed technique is a progressive mesh compression technique. Experimental results show that the proposed method has a better rate distortion performance than MPEG-3DGC/MPEG-4 mesh coder. © 2009 Elsevier Inc. All rights reserved

    Compressive sensing using the modified entropy functional

    Get PDF
    Cataloged from PDF version of article.In most compressive sensing problems, 1 norm is used during the signal reconstruction process. In this article, a modified version of the entropy functional is proposed to approximate the 1 norm. The proposed modified version of the entropy functional is continuous, differentiable and convex. Therefore, it is possible to construct globally convergent iterative algorithms using Bregman’s row-action method for compressive sensing applications. Simulation examples with both 1D signals and images are presented. © 2013 Elsevier Inc. All rights reserved

    Special issue on microscopic image processing

    Get PDF
    Cataloged from PDF version of article

    Image Classification of Human Carcinoma Cells Using Complex Wavelet-Based Covariance Descriptors

    Get PDF
    Cataloged from PDF version of article.Cancer cell lines are widely used for research purposes in laboratories all over the world. Computer-assisted classification of cancer cells can alleviate the burden of manual labeling and help cancer research. In this paper, we present a novel computerized method for cancer cell line image classification. The aim is to automatically classify 14 different classes of cell lines including 7 classes of breast and 7 classes of liver cancer cells. Microscopic images containing irregular carcinoma cell patterns are represented by subwindows which correspond to foreground pixels. For each subwindow, a covariance descriptor utilizing the dual-tree complex wavelet transform (DT-ℂWT) coefficients and several morphological attributes are computed. Directionally selective DT-ℂWT feature parameters are preferred primarily because of their ability to characterize edges at multiple orientations which is the characteristic feature of carcinoma cell line images. A Support Vector Machine (SVM) classifier with radial basis function (RBF) kernel is employed for final classification. Over a dataset of 840 images, we achieve an accuracy above 98%, which outperforms the classical covariance-based methods. The proposed system can be used as a reliable decision maker for laboratory studies. Our tool provides an automated, time- and cost-efficient analysis of cancer cell morphology to classify different cancer cell lines using image-processing techniques, which can be used as an alternative to the costly short tandem repeat (STR) analysis. The data set used in this manuscript is available as supplementary material through http://signal.ee.bilkent.edu.tr/cancerCellLineClassificationSampleImages.html. © 2013 Keskin et al

    First Demonstration of a Pixelated Charge Readout for Single-Phase Liquid Argon Time Projection Chambers

    Full text link
    Liquid Argon Time Projection Chambers (LArTPCs) have been selected for the future long-baseline Deep Underground Neutrino Experiment (DUNE). To allow LArTPCs to operate in the high-multiplicity near detector environment of DUNE, a new charge readout technology is required. Traditional charge readout technologies introduce intrinsic ambiguities, combined with a slow detector response, these ambiguities have limited the performance of LArTPCs, until now. Here, we present a novel pixelated charge readout that enables the full 3D tracking capabilities of LArTPCs. We characterise the signal to noise ratio of charge readout chain, to be about 14, and demonstrate track reconstruction on 3D space points produced by the pixel readout. This pixelated charge readout makes LArTPCs a viable option for the DUNE near detector complex.Comment: 13 pages, 9 figure

    How Do You Like Me in This: User Embodiment Preferences for Companion Agents

    Get PDF
    We investigate the relationship between the embodiment of an artificial companion and user perception and interaction with it. In a Wizard of Oz study, 42 users interacted with one of two embodiments: a physical robot or a virtual agent on a screen through a role-play of secretarial tasks in an office, with the companion providing essential assistance. Findings showed that participants in both condition groups when given the choice would prefer to interact with the robot companion, mainly for its greater physical or social presence. Subjects also found the robot less annoying and talked to it more naturally. However, this preference for the robotic embodiment is not reflected in the users’ actual rating of the companion or their interaction with it. We reflect on this contradiction and conclude that in a task-based context a user focuses much more on a companion’s behaviour than its embodiment. This underlines the feasibility of our efforts in creating companions that migrate between embodiments while maintaining a consistent identity from the user’s point of view

    Entropy-Functional-Based Online Adaptive Decision Fusion Framework with Application to Wildfire Detection in Video

    Get PDF
    Cataloged from PDF version of article.In this paper, an entropy-functional-based online adaptive decision fusion (EADF) framework is developed for image analysis and computer vision applications. In this framework, it is assumed that the compound algorithm consists of several subalgorithms, each of which yields its own decision as a real number centered around zero, representing the confidence level of that particular subalgorithm. Decision values are linearly combined with weights that are updated online according to an active fusion method based on performing entropic projections onto convex sets describing subalgorithms. It is assumed that there is an oracle, who is usually a human operator, providing feedback to the decision fusion method. A video-based wildfire detection system was developed to evaluate the performance of the decision fusion algorithm. In this case, image data arrive sequentially, and the oracle is the security guard of the forest lookout tower, verifying the decision of the combined algorithm. The simulation results are presented
    corecore