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In most compressive sensing problems, �1 norm is used during the signal reconstruction process. In
this article, a modified version of the entropy functional is proposed to approximate the �1 norm. The
proposed modified version of the entropy functional is continuous, differentiable and convex. Therefore,
it is possible to construct globally convergent iterative algorithms using Bregman’s row-action method for
compressive sensing applications. Simulation examples with both 1D signals and images are presented.
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1. Introduction

The Nyquist–Shannon sampling theorem [1] is one of the fun-
damental theorems in signal processing literature. It specifies the
conditions for perfect reconstruction of a continuous signal from
its samples. If a signal is sampled with a sampling frequency that
is at least two times larger than its bandwidth, it can be perfectly
reconstructed from its samples. However in many applications of
signal processing including waveform compression, perfect recon-
struction is not necessary. In this article, a modified version of the
entropy functional is proposed. The functional is defined for both
positive and negative real numbers and it is continuous, differen-
tiable and convex everywhere. Therefore it can be used as a cost
function in many signal processing problems including the com-
pressive sensing problem.

The most common method used in compression applications is
transform coding. The signal x[n] is transformed into another do-
main defined by the transformation matrix ψ . The transformation
procedure is simply finding the inner product of the signal x[n]
with the rows ψi of the transformation matrix ψ represented as
follows:

sl = 〈x,ψl〉, l = 1,2, . . . , N, (1)

where x is a column vector, whose entries are samples of the sig-
nal x[n].

The digital signal x[n] can be reconstructed from its transform
coefficients sl as follows:

x =
N∑

l=1

sl.ψl or x = ψ.s, (2)

where s is a vector containing the transform domain coefficients sl .
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The basic idea in digital waveform coding is that the signal
should be approximately reconstructed from only a few of its non-
zero transform coefficients. In most cases, including the JPEG im-
age coding standard, the transform matrix ψ is chosen in such a
way that the new signal s is efficiently represented in the trans-
form domain with a small number of coefficients. A signal x is
compressible, if it has only a few large amplitude sl coefficients
in the transform domain and the rest of the coefficients are either
zeros or negligibly small-valued.

In a compressive sensing framework, the signal is assumed to
be K -sparse in a transformation domain, such as the wavelet do-
main or the DCT (Discrete Cosine Transform) domain. A signal with
length N is K -sparse if it has at most K non-zero and (N − K ) zero
coefficients in a transform domain. The case of interest in CS prob-
lems is when K � N , i.e., sparse in the transform domain.

The CS theory introduced in [2–6] provides answers to the
question of reconstructing a signal from its compressed measure-
ments y, which is defined as follows

y = φx = φ.ψ.s = θ.s, (3)

where φ is the M × N measurement matrix and M � N . The re-
construction of the original signal x from its compressed measure-
ments y cannot be achieved by simple matrix inversion or inverse
transformation techniques. A sparse solution can be obtained by
solving the following optimization problem:

sp = arg min||s||0 such that θ.s = y. (4)

However, this problem is an NP-complete optimization problem;
therefore, its solution cannot be found easily. It is also shown
in [2–4] that it is possible to construct the φ matrix from ran-
dom numbers, which are i.i.d. Gaussian random variables. In
this case, the number of measurements should be chosen as
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Fig. 1. Entropy functional g(v) (+), |v| (◦) that is used in �1 norm and the Euclidean
cost function v2 (−) that is used in �2 norm.

cK log( N
K ) < M � N to satisfy the conditions for perfect recon-

struction [2], and [3]. With this choice of the measurement matrix,
the optimization problem (4) can be approximated by �1 norm
minimization as:

sp = arg min||s||1 such that θ.s = y. (5)

Instead of solving the original CS problem in (4) or (5), several
researchers reformulate them to approximate the solution. For ex-
ample, in [15], the authors developed a Bayesian framework and
solved the CS problem using Relevance Vector Machines (RVM).
In [7,8] the authors replaced the objective function of the CS op-
timization in (4), (5) with a new objective function to solve the
sparse signal reconstruction problem. One popular approach is re-
placing �0 norm with �p norm, where p ∈ (0,1) [7,9] or even
with the mix of two different norms as in [10]. However, in these
cases, the resulting optimization problems are not convex. Several
studies in the literature addressed �p norm based non-convex op-
timization problems and applied their results to the sparse signal
reconstruction example [11–14].

The entropy functional g(v) = v log v is also used to approx-
imate the solution of �1 optimization and linear programming
problems in signal and image reconstruction by Bregman [16], and
others [17–23]. In this article, we propose the use of a modified
version of the entropy functional as an alternative way to approxi-
mate the CS problem. In Fig. 1, plots of the different cost functions
including the proposed modified entropy function

g(v) =
(

|v| + 1

e

)
log

(
|v| + 1

e

)
+ 1

e
, (6)

as well as the absolute value g(v) = |v| and g(v) = v2 are shown.
The modified entropy functional (6) is convex, continuous and dif-
ferentiable, it slowly increases compared to g(v) = v2, because
log(v) is much smaller than v for high v values as seen in Fig. 1.
The convexity proof for the modified entropy functional is given in
Appendix A.

Bregman also developed iterative row-action methods to solve
the global optimization problem by successive local Bregman-
projections. In each iteration step, a Bregman-projection, which is a
generalized version of the orthogonal projection, is performed onto
a hyperplane representing a row of the constraint matrix θ . In [16],
Bregman proved that the proposed iterative method is guaranteed
to converge to the global minimum, given that there is a proper
choice of the initial estimate (e.g., v0 = 0).

An interesting interpretation of the row-action approach is that
it provides an on-line solution to the CS problem. Each new mea-
surement of the signal adds a row to the matrix θ . In the iterative
row-action method, a Bregman-projection is performed onto the
new hyperplane formed by the new measurement. In this way, the
currently available solution is updated without solving the entire
CS problem. The new solution can be further updated by using
past or new measurements in an iterative manner by performing
other Bregman-projections. Therefore, it is possible to develop a
real-time on-line CS method using the proposed approach.

In Section 2 of this paper, we review the Bregman-projection
concept and define the modified entropy functional and related
Bregman-projections. We generalize the entropy function based
convex optimization method introduced by Bregman because the
ordinary entropy function is defined only for positive real num-
bers. On the other hand, transform domain coefficients can be both
positive and negative.

Section 2 also contains the Bregman-projection definition, and
formulation of the entropy functional based CS reconstruction
problem. We define the iterative CS algorithm in Section 2.1, and
provide experimental results in Section 4.

2. Bregman-projection based algorithm

The �o and �1 norm based cost functions (4) and (5) used in
compressive sensing problems are not differentiable everywhere.
Therefore, it is not possible to use convex optimization algorithms
to solve the CS problems in (4) and (5). Besides, as the size of the
problem increases, solving these optimization problems becomes
very compelling. As the original CS problem given in (4) and (5)
involves non-convex �0 and �1 cost functions, it cannot be divided
into simpler subproblems for convex optimization.

In this article, we replace �0 or �1 norms in the original CS
problem with a new cost function called modified entropy func-
tion. In this way, it becomes possible to utilize Bregman’s itera-
tive convex optimization methods. Bregman’s algorithms have been
widely used in many signal processing applications such as signal
reconstruction and inverse problems [17,18,22–31]. Here, we in-
troduce an entropy based cost function that leads to an iterative
solution of the CS problem by dividing it into simpler convex sub-
problems.

Assume that the original signal x can be represented by a
K -sparse length-N vector s in a transform domain characterized by
the transform matrix ψ . In CS problems, the original signal x is not
available. However M measurements y = [y1, . . . , yM ]T = φx of the
original signal are observable via the measurement matrix φ, and
the relations between y and s are described as in Eq. (3). CS the-
ory suggests that we can find x using �1 minimization if certain
conditions hold, such as the Restricted Isometry Property [3].

Bregman’s method provides globally convergent iterative algo-
rithms to solve optimization problems with convex, continuous
and differentiable cost functionals g(.):

min
s∈C

g(s), (7)

such that

θi .s = yi for i = 1,2, . . . , M, (8)

where θi is the ith row of the matrix θ . In [16], Bregman showed
that optimization problems with continuous and differentiable cost
functionals can be divided into subproblems, which can be solved
in an iterative manner, to approximate the solution of the original
problem. Each equation in (8) represents a hyperplane Hi ∈ R N ,
which are closed and convex sets in R N . In Bregman’s method, the
iterative reconstruction algorithm starts with an arbitrary initial
estimate and successive Bregman-projections are performed onto
the hyperplanes Hi , i = 1,2, . . . , M , in each step of the iterative
algorithm.
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The Bregman-projection onto a closed and convex set is a gen-
eralized version of the orthogonal projection onto a convex set
[16]. Let so be an arbitrary vector in R N . Its Bregman-projection
sp onto a closed convex set C with respect to a cost functional
g(s) is defined as follows:

sp = arg min
s∈C

D
(
s, so), (9)

where

D
(
s, so) = g(s) − g

(
so) − 〈∇g

(
so), so − s

〉
, (10)

and D is the distance function related with the cost function ||.||d ,
g is the distance measure and ∇ is the gradient operator.

In CS problems, we have M hyperplanes Hi : θi .s = yi for i =
1,2, . . . , M . For each hyperplane Hi , the Bregman-projection (9) is
equivalent to

∇g
(
sp) = ∇g

(
so) + λθi, (11)

θi .s
p = yi (12)

where λ is the Lagrange multiplier. As pointed out above, the
Bregman-projection is a generalization of the orthogonal projec-
tion. When the cost functional is the Euclidean cost functional
g(s) = ∑

n s[n]2, the distance D(s1, s2) becomes the �2 norm of
difference vector (s1 − s2), and the Bregman-projection simply be-
comes the well-known orthogonal projection onto a hyperplane.

When the cost functional is the entropy functional, which is
defined as

g(s) =
∑

n

s(n) log
(
s(n)

)
, (13)

the Bregman-projection onto the hyperplane Hi leads to the fol-
lowing equation

sp(n) = so(n).eλ.θi(n), n = 1,2, . . . , N, (14)

where the Lagrange multiplier λ is obtained by inserting (14) into
the hyperplane equation given in (8). The previous set of equations
are used in signal reconstruction from Fourier Transform samples
[23] and the tomographic reconstruction problem [17].

However, in its original form, entropy is only defined for posi-
tive real numbers. In CS problem entries of vector s can take both
positive and negative values. We thus modify the original entropy
function and extend it to negative real numbers as follows:

ge(s) =
N∑

n=1

((∣∣s[n]∣∣ + 1

e

)
.

(
log

(∣∣s[n]∣∣ + 1

e

)))
+ 1

e
, (15)

where the subscript e represents the term entropy. The modified
entropy function satisfies the following conditions:

(i) ∂ ge
∂s[n] (0) = 0, n = 1,2, . . . , N , and

(ii) ge is strictly convex and continuously differentiable.

Therefore the following optimization problem

min ge(s) s.t. θ.s = y (16)

can be solved using Bregman’s convex optimization method.
On the other hand, the �1 norm is not a continuously differ-

entiable function; therefore, non-differentiable minimization tech-
niques such as sub-gradient methods [32] should be used for solv-
ing �1 based optimization problems. Another way of approximating
the �1 penalty function using an entropy functional is also avail-
able in [33].
Fig. 2. Geometric interpretation of the entropic projection method: Sparse repre-
sentation si corresponding to decision functions at each iteration are updated so
as to satisfy the hyperplane equations defined by the measurements yi and the
measurement vector θi . Lines in the figure represent hyperplanes in R

N . Sparse rep-
resentation vector si converges to the intersection of the hyperplanes. Notice that
Bregman-projections are not orthogonal projections.

To obtain the Bregman-projection of so onto a hyperplane Hi
with respect to the entropic cost functional (16), we need to min-
imize the generalized Bregman distance D(s, so) between so and
the hyperplane Hi :

D
(
s, so) = ge

(
so) − ge(s) − 〈∇ge(s), so − s

〉
(17)

with the condition that θis = yi . Using the modified entropy cost
functional (15) in (11), entries of the projection vector sp can be
obtained as:

sgn
(
sp[n]).

[
log

(∣∣sp[n]∣∣ + 1

e

)
+ 1

]

= sgn
(
so[n]).

[
log

(∣∣so[n]∣∣ + 1

e

)
+ 1

]
+ λθi[n],

n = 1,2, . . . , N, (18)

where λ is the Lagrange multiplier, which can be obtained from
θis = yi .

The Bregman-projection vector sp is the solution that sat-
isfies the set of equations (18), and the hyperplane equation
Hi : θi .s = yi .

2.1. Iterative reconstruction algorithm

The global convex optimization problem defined in (16) is
solved by performing successive local Bregman-projections onto
hyperplanes defined by the rows of the matrix θ .

The iterations start with an initial estimate so = 0. In the first
iteration cycle, this vector is Bregman-projected onto the hyper-
plane H1 and s1 is obtained. The iterate s1 is projected onto the
next hyperplane H2 (see Fig. 2). This iterative process continues
until the (N − 1)st estimate sN−1 is Bregman-projected onto H N
and sN is obtained. In this way the first iteration cycle is com-
pleted. In the next cycle, the vector sN is projected onto the hyper-
plane H1 and sN+1 is obtained, and so on. Bregman proved that
si defined in (16) converges to the solution of the optimization
problem. In Appendix A, the proof of convergence of the proposed
algorithm is provided.

Bregman-projection method can handle inequality constraints
as well. The iterative algorithm is still globally convergent (Ap-
pendix A) when the equality constraints in (8) are relaxed by εi

yi − εi � θis � yi + εi, i = 1,2, . . . , N. (19)

This is because hyperslabs defined by (19) are closed and convex
sets. In each step of the iterative algorithm the current iterate is
projected onto the closest boundary hyperplane defined by one of
the inequality signs in (19). If the iterate satisfies the current in-
equality, it is simply projected onto the next hyperslab.

It is also possible to use block iterative projection meth-
ods, which converge faster than single projection based meth-
ods [28,34]. Usually block iterative algorithms handling a block
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of hyperplanes at the same time converge faster than the single
hyperplane based algorithm that we described above. Since the
compressive sensing problems described in this paper are offline
problems, the speed of convergence is not that important.

3. Proximal splitting based algorithm

In [35–38] proximity operators of convex functions and their
signal processing applications are reviewed. Various proximal split-
ting algorithms for convex optimization problems including the
forward–backward splitting (FBS) algorithm are also presented. In
[39], the proof of convergence of the FBS algorithm, and a frame-
work, which uses Bregman distance function (17) as the cost func-
tion, is presented. This framework can be used to solve convex
optimization problems involving modified entropy function. The
FBS based iterative algorithm has the following update equation:

sn+1 = Pci

(
sn − γn∇ge

(
sn)), (20)

where Pci is the orthogonal projection operator onto the ith hy-
perplane, γn is the step size satisfying 0 < γ � 1/L, and ∇ge(.)

is L-Lipschitz continuous gradient of the modified entropy func-
tion [35,39]. As given in (18), we have an analytic expression for
the gradient of the modified entropic cost function, therefore we
do not need to solve any non-linear equations to obtain the next
iterate sn+1. The algorithm is summarized as follows:

Begin s0 ∈R
N

For n = 0,1, . . .

γn ∈ [0,1/L]
vn = sn − γn∇ge(sn)

λn ∈ (0,1)

sn+1 = sn + λn
(

Pc,n(vn) − sn
)

where the Pc,n operation in the last step is the orthogonal pro-
jections onto the nth hyperplane defined in (8). Proximity splitting
method reduces the computational cost significantly because there
is no need to solve any non-linear equations and we have an
analytic expression for the gradient of the cost function. The con-
vergence of the algorithm is proved in [39]. It is also possible to
obtain a block iterative version of the FBS algorithm as described
in [28,34].

4. Experimental results

For the validation and testing of the entropic minimization
method, experiments with four different one-dimensional (1D) sig-
nals, and 30 different images are carried out. The cusp signal,
which consists of 1024 samples, and the hisine signal, which con-
sists of 256 samples are shown in Figs. 3 and 4, respectively. The
cusp and hisine signals can be sparsely approximated in the DCT
domain. The 4 and 25 sparse random signals are composed of 128
and 256 samples, respectively, and they consist of 4 and 25 ran-
domly located non-zero samples, respectively. The measurement
matrices φ are chosen as Gaussian random matrices.

In the first set of experiments, the original signal is recon-
structed, when M = 204, 717 measurements are taken from the
cusp signal and, when M = 24, 40 measurements are taken
from the S = 5 random signal. The reconstructed signals using
the entropy based cost functional based algorithm are shown in
Figs. 5(a), 5(b), 6(a), and 6(b). The cusp signal has 76 DCT co-
efficients, whose magnitudes are larger than 10−2. Therefore, it
can be approximated as S = 76 sparse signal in the DCT domain.
The performance of the reconstruction is measured using the SNR
criterion, which is defined as follows
Fig. 3. The cusp signal with N = 1024 samples.

Fig. 4. Hisine signal with N = 256 samples.

SNR = 20 log10

( ||x||2
||x − xrec||2

)
, (21)

where x is the original signal and xrec is the reconstructed signal.
The results of 39 and 44 dB SNR are achieved by reconstructing the
original signal using the proposed method from M = 204, and 717
measurements, respectively. In the case of the experiment with
random signals, the proposed method missed one sample from the
original signal when using 30 measurements and perfectly recon-
structed the original signal when using 50 measurements.

In the next set of experiments we compared our reconstruc-
tion results with 4 well-known CS reconstruction algorithms from
the literature; CoSamp [40], Matching Pursuit (MP) [41], �1magic
[42], and �p optimization based CS reconstruction [9] algorithms.
We tested the proposed method against the �p optimization
based CS reconstruction algorithm with 3 different p values;
p = [0.8,1,1.7]. When p = 1, the algorithm solves the �1 norm
optimization problem given in (5). The reason why we choose
p = 1.7 to test against the proposed algorithm is that the �1.7
norm curve is very similar to the curve of the modified entropic
functional (Fig. 1).

In this set of experiments, by taking different amounts of mea-
surements ranging from 10% to 80% of the total number of the
samples of the 1D signal, we tried to reconstruct the original sig-
nal. Then, we measured the SNR between the original and the
reconstructed signals. In these tests, the main region of interest
is 20–60% range.

We present results of the tests with the cusp signal in Fig. 7.
The proposed algorithm performed better than �1magic, CoSamp
algorithms in the 20–50% measurements range. It also has a com-
parable performance with the rest of the algorithms. In Fig. 8,
the results of the tests with hisine signal are presented. The pro-
posed algorithm performed significantly better than �1magic and
CoSamp, and marginally outperformed the rest of the algorithms.
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Fig. 5. The cusp signal with 1024 samples reconstructed from M = 204 (a) and M =
716 (b) measurements using the iterative, entropy functional based method.

It is important to note that, both the cusp and the hisine sig-
nals are not sparse but compressible in the sense that most of
the transform domain coefficients are not zero but close to zero
[43]. Therefore, the sparsity level of the test signals are not known
exactly beforehand.

In case of the tests with the 25-sparse impulse signal, which
consists of isolated impulses, CoSamp outperformed all the other
algorithms. In Fig. 9, we presented the results of reconstructing
the signal from measurements that as many as 20–40% of the
signal samples. Above 40%, all the algorithms except Matching Pur-
suit and �1.7 norm based reconstruction algorithms, achieved more
than 50 dB SNR. We believe that above 40–50 dB of SNR, the signal
reconstruction can be counted as a perfect reconstruction. There-
fore, we compared the percentage of measurements at which the
individual algorithms achieved 50 dB SNR. The proposed algorithm
achieved 50 dB SNR around 30% of the measurements. Due to nu-
merical imprecision in the calculation of the alternating entropic
projections, the proposed algorithm achieved approximately 50 dB
SNR. Only �0.8 norm based reconstruction algorithm and CoSamp
achieved this bound at lower measurement rates compared to the
proposed algorithm. The entropic projection based method outper-
formed the rest of the algorithms.

In the last set of experiments, we implemented the proposed
algorithm in 2-dimension (2D) and applied it to six well-known
images from the image processing literature and 24 images from
the Kodak dataset [44]. The images in Kodak dataset are 24 bit
per pixel color images. We first transformed all the color images
into YUV color space and used the 8 bit per pixel luminance com-
ponent (Y channel) of the images in our tests. We compared our
results with the block based compressed sensing algorithm given
in [45]. As in [45], we divided the image into blocks and recon-
structed those blocks individually. We tested both the proposed
algorithm and Fowler et al.’s method using random measurements,
Fig. 6. Random sparse signal with 128 samples is reconstructed from (a) M = 3S and (b) M = 4S measurements using the iterative, entropy functional based method.
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Fig. 7. The reconstructed cusp signal with N = 256 samples.

Fig. 8. The reconstruction error for a hisine signal with N = 256 samples.

Fig. 9. The impulse signal with N = 256 samples. The signal consists of 25 random
amplitudes that are located at random locations in the signal.

Table 1
Image reconstruction results. The images are reconstructed using measurements
that are 30% of the total number of the pixels in the image.

Images Fowler’s method [45]
SNR in dB

Proposed method
SNR in dB

Barbara 19.412 18.528
Mandrill 16.822 17.401
Lenna 26.516 26.806
Goldhill 22.473 23.857
Fingerprint 20.171 22.205
Peppers 26.831 25.854
Kodak (average) 21.51 21.98
Average 21.615 22.072

that are as many as 30% of the total number of pixels in the im-
age. On average, we achieved approximately a 0.4 dB higher SNR
compared to the algorithm given in [45], as shown in Table 1. In
both methods, the images are processed using a Wiener filter to
smooth out the blocking artifacts caused by block processing.
In all of the previous examples, the entropic projection algo-
rithm is implemented in the following way. The algorithm starts
with an initial estimate of the signal, such as a zero amplitude sig-
nal or a signal reconstructed using a pseudo inversion. The choice
of the initial estimate of the signal may affect the speed of con-
vergence. Then in the first iteration cycle, the estimated signal is
entropically projected onto the hyperplanes defined by the mea-
surements, one after the other. At the end of the iteration cycle,
the transform domain coefficients of the resulting estimate are
rank-ordered according to their magnitude values with only the
significant coefficients being kept and the rest set to zero. After
each iteration cycle, the number of retained transform domain co-
efficients that are kept is increased by one. The number of the
coefficients that are kept does not exceed the number of measure-
ments. If the initial signal is known to be exactly K -sparse, then
only K transform domain coefficients, which have the largest am-
plitude, are kept.

5. Conclusion

In this article, we introduced an iterative CS reconstruction al-
gorithm that uses an entropy based cost functional. The proposed
entropy based cost functional is convex, continuous and differen-
tiable everywhere and approximates �1 norm in the original CS
formulation. It is convex, continuous and differentiable, therefore,
it enables the user to divide the large and complex CS problems
into smaller and simpler subproblems. We developed a globally
convergent algorithm, that solves these individual subproblems in
an iterative manner to approximate the original problem solution.
It is experimentally observed that the entropy based cost function
and the iterative row-action method can be used for reconstructing
both sparse and compressible signals from their compressed mea-
surements. Since most practical signals are not completely sparse
but compressible, the proposed algorithm is suitable for compres-
sive sensing applications of real life signals.

The proposed method is capable of dividing large CS recon-
struction problems into smaller and simpler parts. Therefore, it
can be used to simplify large scale problems and provide com-
putationally efficient ways to solve those problems. Moreover it is
also shown that the row-action methods provide an on-line solu-
tion to the CS problem. The reconstruction result can be updated
on-line according to the new measurements without solving the
entire optimization problem again in real time.
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Appendix A. Proof of convergence of the iterative algorithm

The problem described in (8) and (9) is a convex programming
problem:

mins∈H g(s)
subject to θi .s = yi for i = 1,2, . . . , M, (A.1)

where g(s) is a strictly convex and differentiable cost function
in R

N , H is the intersection of M hyperplanes θi .s = yi , and
s ∈ R

N . In [16], Bregman solved the convex optimization prob-
lem (A.1) using Bregman-projections. He proved in [16, Theorem 3]
that starting from an initial point s0 = 0, and making successive
Bregman-projections on convex hyperplanes as defined by θi .s = yi
(Section 2.1), converges to the solution of the convex optimization
problem, provided that H is non-empty.



K. Kose et al. / Digital Signal Processing 24 (2014) 63–70 69
Fig. 10. The plot of the entropic cost function, its first, and second derivatives.

Statement 1. The function g(x) = (|x| + 1
e ) log(|x| + 1

e ) + 1
e is contin-

uously differentiable in R.

Proof. The derivative of the cost function g(x) can be computed
using the chain rule. The first derivative of the cost function g(x)
is

g′(x) = sgn(x)

[
log

(
|x| + 1

e

)
+ 1

]
, (A.2)

which is a continuous function in R. The plot of the function is
shown in Fig. 10. Extension to R

N is straightforward. �
Statement 2. The function g(x) is a strictly convex function.

Proof. The second derivatives of the cost function g(x) = (|x| +
1
e ) log(|x| + 1

e ) + 1
e is

g′′(x) = 1

|x| + 1
e

> 0, (A.3)

where g(x) > 0,∀x ∈ R. The one-dimensional plot of the function
is shown in Fig. 10. The cost function is strictly convex because its
second derivative is non-negative ∀x ∈R.

The problem described in (19) is also a convex programming
problem. The convergence of this optimization problem can also be
proved using Theorem 4 of [16] because g(s) is a strictly convex
and differentiable function in R

N . �
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