453 research outputs found

    Damage to Cauliflower Coral by Monofilament Fishing Lines in Hawaii

    Get PDF
    Abstract in English and FrenchMany fishing methods and gear types used in coral reefs cause physical damage to the reef substratum. Only recently have monofilament fishing lines been recognized as a cause of coral damage and death. We assessed the extent of damage caused by monofilament fishing lines to the cauliflower coral ( Pocillopora meandrina) colonies in fished and adjacent unfished zones at seven sites in the main Hawaiian islands. We examined coral colonies for the presence or absence of fishing line and for the degree of damage (dead, no live coral surface; damaged, some dead coral surface; or intact, no dead coral surface) in nine 25-m2 grids. The mean proportion of colonies entangled with fishing lines in fished zones ranged from 0.18 to 0.44. The mean proportion of dead or damaged colonies was higher in fished than adjacent unfished zones, and there was a positive linear relationship between the proportion of colonies entangled with fishing lines and the proportion of dead or damaged colonies. These results indicate that monofilament fishing lines have a negative impact on the health and survival of P. meandrina colonies. Because tourism and related recreational fishing activities are expanding rapidly in many tropical states and nations, we recommend that the degrading effects of fishing lines on corals be considered in the design and management of tourism development.This study was supported by a grant from the National Fisheries and Wildlife Foundation (2001–0336–002) to E.A.M

    A Minkowski Type Trace Inequality and Strong Subadditivity of Quantum Entropy II: Convexity and Concavity

    Full text link
    We revisit and prove some convexity inequalities for trace functions conjectured in the earlier part I. The main functional considered is \Phi_{p,q}(A_1,A_2,...,A_m) = (trace((\sum_{j=1}^m A_j^p)^{q/p}))^{1/q} for m positive definite operators A_j. In part I we only considered the case q=1 and proved the concavity of \Phi_{p,1} for 0 < p \leq 1 and the convexity for p=2. We conjectured the convexity of \Phi_{p,1} for 1< p < 2. Here we not only settle the unresolved case of joint convexity for 1 \leq p \leq 2, we are also able to include the parameter q\geq 1 and still retain the convexity. Among other things this leads to a definition of an L^q(L^p) norm for operators when 1 \leq p \leq 2 and a Minkowski inequality for operators on a tensor product of three Hilbert spaces -- which leads to another proof of strong subadditivity of entropy. We also prove convexity/concavity properties of some other, related functionals.Comment: Proof of a conjecture in math/0701352. Revised version replaces earlier draft. 18 pages, late

    Hypercontractivity on the qq-Araki-Woods algebras

    Full text link
    Extending a work of Carlen and Lieb, Biane has obtained the optimal hypercontractivity of the qq-Ornstein-Uhlenbeck semigroup on the qq-deformation of the free group algebra. In this note, we look for an extension of this result to the type III situation, that is for the qq-Araki-Woods algebras. We show that hypercontractivity from LpL^p to L2L^2 can occur if and only if the generator of the deformation is bounded.Comment: 17 page

    Inequalities for quantum skew information

    Full text link
    We study quantum information inequalities and show that the basic inequality between the quantum variance and the metric adjusted skew information generates all the multi-operator matrix inequalities or Robertson type determinant inequalities studied by a number of authors. We introduce an order relation on the set of functions representing quantum Fisher information that renders the set into a lattice with an involution. This order structure generates new inequalities for the metric adjusted skew informations. In particular, the Wigner-Yanase skew information is the maximal skew information with respect to this order structure in the set of Wigner-Yanase-Dyson skew informations. Key words and phrases: Quantum covariance, metric adjusted skew information, Robertson-type uncertainty principle, operator monotone function, Wigner-Yanase-Dyson skew information

    A Characterization of right coideals of quotient type and its application to classification of Poisson boundaries

    Full text link
    Let GG be a co-amenable compact quantum group. We show that a right coideal of GG is of quotient type if and only if it is the range of a conditional expectation preserving the Haar state and is globally invariant under the left action of the dual discrete quantum group. We apply this result to theory of Poisson boundaries introduced by Izumi for discrete quantum groups and generalize a work of Izumi-Neshveyev-Tuset on SUq(N)SU_q(N) for co-amenable compact quantum groups with the commutative fusion rules. More precisely, we prove that the Poisson integral is an isomorphism between the Poisson boundary and the right coideal of quotient type by maximal quantum subgroup of Kac type. In particular, the Poisson boundary and the quantum flag manifold are isomorphic for any q-deformed classical compact Lie group.Comment: 28 pages, Remark 4.9 adde

    Joint system quantum descriptions arising from local quantumness

    Get PDF
    Bipartite correlations generated by non-signalling physical systems that admit a finite-dimensional local quantum description cannot exceed the quantum limits, i.e., they can always be interpreted as distant measurements of a bipartite quantum state. Here we consider the effect of dropping the assumption of finite dimensionality. Remarkably, we find that the same result holds provided that we relax the tensor structure of space-like separated measurements to mere commutativity. We argue why an extension of this result to tensor representations seems unlikely
    • …
    corecore