32 research outputs found
A Compact Cold-Atom Interferometer with a High Data-Rate Grating Magneto-Optical Trap and a Photonic-Integrated-Circuit-Compatible Laser System
The extreme miniaturization of a cold-atom interferometer accelerometer
requires the development of novel technologies and architectures for the
interferometer subsystems. Here we describe several component technologies and
a laser system architecture to enable a path to such miniaturization. We
developed a custom, compact titanium vacuum package containing a
microfabricated grating chip for a tetrahedral grating magneto-optical trap
(GMOT) using a single cooling beam. In addition, we designed a multi-channel
photonic-integrated-circuit-compatible laser system implemented with a single
seed laser and single sideband modulators in a time-multiplexed manner,
reducing the number of optical channels connected to the sensor head. In a
compact sensor head containing the vacuum package, sub-Doppler cooling in the
GMOT produces 15 uK temperatures, and the GMOT can operate at a 20 Hz data
rate. We validated the atomic coherence with Ramsey interferometry using
microwave spectroscopy, then demonstrated a light-pulse atom interferometer in
a gravimeter configuration for a 10 Hz measurement data rate and T = 0 - 4.5 ms
interrogation time, resulting in g / g = 2.0e-6. This work represents
a significant step towards deployable cold-atom inertial sensors under large
amplitude motional dynamics.Comment: 21 pages, 10 figure
Anapole nanolasers for mode-locking and ultrafast pulse generation
Nanophotonics is a rapidly developing field of research with many suggestions for a design of nanoantennas, sensors and miniature metadevices. Despite many proposals for passive nanophotonic devices, the efficient coupling of light to nanoscale optical structures remains a major challenge. In this article, we propose a nanoscale laser based on a tightly confined anapole mode. By harnessing the non-radiating nature of the anapole state, we show how to engineer nanolasers based on InGaAs nanodisks as on-chip sources with unique optical properties. Leveraging on the near-field character of anapole modes, we demonstrate a spontaneously polarized nanolaser able to couple light into waveguide channels with four orders of magnitude intensity than classical nanolasers, as well as the generation of ultrafast (of 100 fs) pulses via spontaneous mode locking of several anapoles. Anapole nanolasers offer an attractive platform for monolithically integrated, silicon photonics sources for advanced and efficient nanoscale circuitry
Experimental observation of a polarization vortex at an optical bound state in the continuum
Optical bound states in the continuum (BICs) are states supported by a photonic structure that are compatible with free-space radiation, yet become perfectly bound for one specific in-plane momentum and wavelength. Recently, it was predicted that light radiated by such modes around the BIC momentum–frequency condition should display a vortex in its far-field polarization profile, making the BIC topologically protected. Here, we study a one-dimensional grating supporting a transverse magnetic mode with a BIC near 700 nm wavelength, verifying the existence of the BIC using reflection measurements, which show a vanishing reflection feature. Using k-space polarimetry, we measure the full polarization state of reflection around the BIC, highlighting the presence of a topological vortex. We use an electromagnetic dipole model to explain the observed BIC through destructive interference between two radiation channels, characteristic of a Friedrich–Wintgen-type BIC. Our findings shed light on the origin of BICs and verify their topological nature
Symmetry-protected dual bound states in the continuum in metamaterials
Bound state in the continuum (BIC) is a mathematical concept with an infinite radiative quality factor (Q) that exists only in an ideal infinite array of resonators. In photonics, it is essential to achieve high Q resonances for enhanced light-mater interactions that could enable low-threshold lasers, ultrasensitive sensors, and optical tweezers. Hence, it is important to explore BICs in different photonic systems including subwavelength metamaterials where symmetry-protected dual BICs exist. The spectral features of dual BICs are experimentally verified in the terahertz domain by breaking the C2 symmetry that invokes a leakage channel in the form of weakly radiating Fano resonance and electromagnetically induced transparency. The radiative Q factors tend to infinity at discrete symmetry-restoring points and obey an inverse square dependence on the structural asymmetry. BICs in metamaterials allow extreme field confinement with small mode volumes, thereby improving the rate of spontaneous emission in the cavity with much larger Purcell factor. In addition, the topological nature enables a robust existence of BICs with a vector beam profile that is ideal for lasing. The symmetry-protected BICs in metamaterials also possess a unique advantage of scalability at different wavelengths for potential applications in sensing, lasing, switching, and spectral filtering.NRF (Natl Research Foundation, S’pore)MOE (Min. of Education, S’pore)Accepted versio