12 research outputs found

    High Interstitial Fluid Pressure Is Associated with Tumor-Line Specific Vascular Abnormalities in Human Melanoma Xenografts

    Get PDF
    PURPOSE: Interstitial fluid pressure (IFP) is highly elevated in many solid tumors. High IFP has been associated with low radiocurability and high metastatic frequency in human melanoma xenografts and with poor survival after radiation therapy in cervical cancer patients. Abnormalities in tumor vascular networks have been identified as an important cause of elevated tumor IFP. The aim of this study was to investigate the relationship between tumor IFP and the functional and morphological properties of tumor vascular networks. MATERIALS AND METHODS: A-07-GFP and R-18-GFP human melanomas growing in dorsal window chambers in BALB/c nu/nu mice were used as preclinical tumor models. Functional and morphological parameters of the vascular network were assessed from first-pass imaging movies and vascular maps recorded after intravenous bolus injection of 155-kDa tetramethylrhodamine isothiocyanate-labeled dextran. IFP was measured in the center of the tumors using a Millar catheter. Angiogenic profiles of A-07-GFP and R-18-GFP cells were obtained with a quantitative PCR array. RESULTS: High IFP was associated with low growth rate and low vascular density in A-07-GFP tumors, and with high growth rate and high vascular density in R-18-GFP tumors. A-07-GFP tumors showed chaotic and highly disorganized vascular networks, while R-18-GFP tumors showed more organized vascular networks with supplying arterioles in the tumor center and draining venules in the tumor periphery. Furthermore, A-07-GFP and R-18-GFP cells differed substantially in angiogenic profiles. A-07-GFP tumors with high IFP showed high geometric resistance to blood flow due to high vessel tortuosity. R-18-GFP tumors with high IFP showed high geometric resistance to blood flow due to a large number of narrow tumor capillaries. CONCLUSIONS: High IFP in A-07-GFP and R-18-GFP human melanoma xenografts was primarily a consequence of high blood flow resistance caused by tumor-line specific vascular abnormalities

    Combination therapy using imatinib and vatalanib improves the therapeutic efficiency of paclitaxel towards a mouse melanoma tumor

    No full text
    Melanomas respond poorly to chemotherapy. In this study, we investigated the sensitization of B16 mouse melanoma tumors to paclitaxel by a combination of two tyrosine kinase inhibitors: vatalanib, targeting vascular endothelial growth factor receptors, and imatinib, an inhibitor targeting for example, Abl/BCR-ABL, the platelet-derived growth factor receptor, and stem cell factor receptor c-Kit. C57Bl6/J mice carrying B16/PDGF-BB mouse melanoma tumors were treated daily with vatalanib (25 mg/kg), imatinib (100 mg/kg), or a combination of these drugs. Paclitaxel was given subcutaneously twice during the study. The effects of the drugs on tumor cell proliferation in vitro were determined by counting cells. B16/PDGF-BB mouse melanoma tumors were not sensitive to paclitaxel at doses of either 5 or 20 mg/kg. However, the tumor growth was significantly reduced by 58%, in response to paclitaxel (5 mg/kg) when administered with daily doses of both vatalanib and imatinib. Paclitaxel only inhibited the in-vitro growth of B16/PDGF-BB tumor cells when given in combination with imatinib. Imatinib presumably targets c-Kit, as the cells do not express platelet-derived growth factor receptor and as another c-Abl inhibitor was without effect. This was supported by data from three c-Kit-expressing human melanoma cell lines showing varying sensitization to paclitaxel by the kinase inhibitors. In addition, small interfering RNA knockdown of c-Kit sensitized the cells to paclitaxel. These data show that combination of two tyrosine kinase inhibitors, imatinib and vatalanib, increases the effects of paclitaxel on B16/PDGF-BB tumors, thus suggesting a novel strategy for the treatment of melanomas expressing c-Kit. Melanoma Res 21:57-65 (c) 2011 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins

    A combination of low-dose bevacizumab and imatinib enhances vascular normalisation without inducing extracellular matrix deposition

    No full text
    BACKGROUND: Vascular endothelial growth factor (VEGF)-targeting drugs normalise the tumour vasculature and improve access for chemotherapy. However, excessive VEGF inhibition fails to improve clinical outcome, and successive treatment cycles lead to incremental extracellular matrix (ECM) deposition, which limits perfusion and drug delivery. We show here, that low-dose VEGF inhibition augmented with PDGF-R inhibition leads to superior vascular normalisation without incremental ECM deposition thus maintaining access for therapy. METHODS: Collagen IV expression was analysed in response to VEGF inhibition in liver metastasis of colorectal cancer (CRC) patients, in syngeneic (Panc02) and xenograft tumours of human colorectal cancer cells (LS174T). The xenograft tumours were treated with low (0.5 mg kg(−1) body weight) or high (5 mg kg(−1) body weight) doses of the anti-VEGF antibody bevacizumab with or without the tyrosine kinase inhibitor imatinib. Changes in tumour growth, and vascular parameters, including microvessel density, pericyte coverage, leakiness, hypoxia, perfusion, fraction of vessels with an open lumen, and type IV collagen deposition were compared. RESULTS: ECM deposition was increased after standard VEGF inhibition in patients and tumour models. In contrast, treatment with low-dose bevacizumab and imatinib produced similar growth inhibition without inducing detrimental collagen IV deposition, leading to superior vascular normalisation, reduced leakiness, improved oxygenation, more open vessels that permit perfusion and access for therapy. CONCLUSIONS: Low-dose bevacizumab augmented by imatinib selects a mature, highly normalised and well perfused tumour vasculature without inducing incremental ECM deposition that normally limits the effectiveness of VEGF targeting drugs
    corecore