784 research outputs found

    An approximation method for electrostatic Vlasov turbulence

    Get PDF
    Electrostatic Vlasov turbulence in a bounded spatial region is considered. An iterative approximation method with a proof of convergence is constructed. The method is non-linear and applicable to strong turbulence

    Study of cosmic rays in the solar environment Final report, 12 Jan. 1968 - 11 Jan. 1971

    Get PDF
    Convection-diffusion equation for closed formulation of cosmic ray transport theory in solar environmen

    High-energy particles associated with solar flares

    Get PDF
    High-energy particles, the so-called solar cosmic rays, are often generated in association with solar flares, and then emitted into interplanetary space. These particles, consisting of electrons, protons, and other heavier nuclei, including the iron-group, are accelerated in the vicinity of the flare. By studying the temporal and spatial varation of these particles near the earth's orbit, their storage and release mechanisms in the solar corona and their propagation mechanism can be understood. The details of the nuclear composition and the rigidity spectrum for each nuclear component of the solar cosmic rays are important for investigating the acceleration mechanism in solar flares. The timing and efficiency of the acceleration process can also be investigated by using this information. These problems are described in some detail by using observational results on solar cosmic rays and associated phenomena

    Compact shell solitons in K field theories

    Full text link
    Some models providing shell-shaped static solutions with compact support (compactons) in 3+1 and 4+1 dimensions are introduced, and the corresponding exact solutions are calculated analytically. These solutions turn out to be topological solitons, and may be classified as maps S3S3S^3 \to S^3 and suspended Hopf maps, respectively. The Lagrangian of these models is given by a scalar field with a non-standard kinetic term (K field) coupled to a pure Skyrme term restricted to S2S^2, rised to the appropriate power to avoid the Derrick scaling argument. Further, the existence of infinitely many exact shell solitons is explained using the generalized integrability approach. Finally, similar models allowing for non-topological compactons of the ball type in 3+1 dimensions are briefly discussed.Comment: 10 pages, latex, 2 figures, change in title and introduction. Discussion section, 2 figures and references adde

    Some Comments on BPS systems

    Full text link
    We look at simple BPS systems involving more than one field. We discuss the conditions that have to be imposed on various terms in Lagrangians involving many fields to produce BPS systems and then look in more detail at the simplest of such cases. We analyse in detail BPS systems involving 2 interacting Sine-Gordon like fields, both when one of them has a kink solution and the second one either a kink or an antikink solution. We take their solitonic static solutions and use them as initial conditions for their evolution in Lorentz covariant versions of such models. We send these structures towards themselves and find that when they interact weakly they can pass through each other with a phase shift which is related to the strength of their interaction. When they interact strongly they repel and reflect on each other. We use the method of a modified gradient flow in order to visualize the solutions in the space of fields.Comment: 27 pages, 17 figure

    Mirroring within the Fokker-Planck formulation of cosmic ray pitch angle scattering in homogeneous magnetic turbulence

    Get PDF
    The Fokker-Planck coefficient for pitch angle scattering, appropriate for cosmic rays in homogeneous, stationary, magnetic turbulence, is computed from first principles. No assumptions are made concerning any special statistical symmetries the random field may have. This result can be used to compute the parallel diffusion coefficient for high energy cosmic rays moving in strong turbulence, or low energy cosmic rays moving in weak turbulence. Becuase of the generality of the magnetic turbulence which is allowed in this calculation, special interplanetary magnetic field features such as discontinuities, or particular wave modes, can be included rigorously. The reduction of this results to previously available expressions for the pitch angle scattering coefficient in random field models with special symmetries is discussed. The general existance of a Dirac delta function in the pitch angle scattering coefficient is demonstrated. It is proved that this delta function is the Fokker-Planck prediction for pitch angle scattering due to mirroring in the magnetic field

    Detection of bump-on-tail reduced electron velocity distributions at the electron foreshock boundary

    Get PDF
    Reduced velocity distributions are derived from three-dimensional measurements of the velocity distribution of electrons in the 7 to 500 eV range in the electron foreshock. Bump-on-tail reduced distributions are presented for the first time at the foreshock boundary consistent with Filbert and Kellogg's proposed time-of-flight mechanism for generating the electron beams. In a significant number of boundary crossings, bump-on-tail reduced distributions were found in consecutive 3 sec measurements made 9 sec apart. It is concluded that, although the beams are linearly unstable to plasma waves according to the Penrose criterion, they persist on a time scale of 3 to 15 sec

    On the theory of large amplitude Alfven waves

    Get PDF
    Large amplitude Alfvenic disturbances of arbitrary spatial shape and polarization are described by MHD equations, without resort to the usual assumption of planarity. However, because of their nonplanar nature, the direction of propagation of these disturbances cannot, in general, be determined by looking for minima in a variance matrix constructed from observed field fluctuations. When such minima exist, one is observing that subset of interplanetary Alfven waves that is essentially planar

    The Fokker-Planck coefficient for pitch-angle scattering of cosmic rays

    Get PDF
    For the case of homogeneous, isotropic magnetic field fluctuations, it is shown that most theories which are based on the quasi-linear and adiabatic approximation yield the same integral for the Fokker-Planck coefficient for the pitch angle scattering of cosmic rays. For example, despite apparent differences, the theories due to Jokipii and to Klimas and Sandri yield the same integral. It is also shown, however, that this integral in most cases has been evaluated incorrectly in the past. For large pitch angles these errors become significant, and for pitch angles of 90 deg the actual Fokker-Planck coefficient contains a delta function. The implications for these corrections relating cosmic ray diffusion coefficients to observed properties of the interplanetary magnetic field are discussed

    Efficiency of use of pigs, bred in Lithuania, in hybridization system

    Get PDF
    Boars of Landrace, Duroc and Pietrain breeds had positive influence on the vitality of delivered hybrids. Better growth of hybrids is defined in these combinations, where boars of Duroc breed were used. According to the data of Piglog 105, crossbreds of Yorkshire and Pietrain distinguished by the biggest muscularity (59.0%), and the least muscularity was indicated among crossbreds of Yorkshire, Landrace and Duroc (three breeds) and of Lithuanian White and Landrace (53.5 and 54.4% respectively). Lowest muscularity was indicated namely among hybrids of the combinations, having the highest daily gain. Combinations of hybridization, recommended in Lithuania, are presented in the table 1
    corecore